

On computations of the homology of moduli spaces of Riemann surfaces

Felix Jonathan Boes

Max Planck Institute for Mathematics Bonn

23.09.2015

[The Question](#page-1-0)

Definition

Fix a topological surface *S*.

Definition

Fix a topological surface *S*. The moduli space M of Riemann surfaces (of type *S*) is the space of complex structures (on *S*).

Definition

Fix a topological surface *S*. The moduli space M of Riemann surfaces (of type *S*) is the space of complex structures (on *S*).

Question

What is the homology of this space?

By uniformization, the sphere S^2 admits a unique complex structure.

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

Fact

By uniformization, every torus is the quotient of $\mathbb C$ by a lattice.

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

Fact

By uniformization, every torus is the quotient of $\mathbb C$ by a lattice. Thus, it is determined by a point in the upper half plane H.

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

Fact

By uniformization, every torus is the quotient of $\mathbb C$ by a lattice. Thus, it is determined by a point in the upper half plane $\mathbb H$. The moduli space of tori is $\mathfrak{M} = \mathbb H/ SL(2,\mathbb Z) \cong D^2$.

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

Fact

By uniformization, every torus is the quotient of $\mathbb C$ by a lattice. Thus, it is determined by a point in the upper half plane $\mathbb H$. The moduli space of tori is $\mathfrak{M} = \mathbb H/ SL(2,\mathbb Z) \cong D^2$.

Fact

There are several constructions for arbitrary surface types.

[The Model](#page-13-0)

• of genus *g*;

- of genus *g*;
- with *n* incoming (parametrized) boundary curves;

- of genus *g*;
- with *n* incoming (parametrized) boundary curves;
- with *m* outgoing (unparametrized) boundary curves;

- of genus *g*;
- with *n* incoming (parametrized) boundary curves;
- with *m* outgoing (unparametrized) boundary curves; We use the following shorthand $\mathfrak{M}^m_{g,n}.$

Theorem (Bödigheimer 1990)

The moduli space $\mathfrak{M} = \mathfrak{M}^m_{g,n}$ is s finite cell complex. In particular, its homology is computable in terms of a finite \mathcal{L} chain complex $K = K(\mathfrak{M}_{g,n}^m)$.

[Reductions](#page-25-0)

The number of cells of every chain module grows factorially $\mathcal{O}(h!)$ for $h = 2g + m$.

Corollary (Ehrenfried 1998, Vicy 2010)

There is a discrete Morse flow on *K*.

Corollary (Ehrenfried 1998, Vicy 2010)

There is a discrete Morse flow on *K*. The number of cells of every chain module of the associated Morse complex grows factorially $\mathcal{O}((h-1)!)$.

The number of cells of the bi-complex $K(\mathfrak{M}^3_{1,1})$:

The number of cells of the bi-complex $K(\mathfrak{M}^3_{1,1})$:

The number of cells of the Morse complex $Morse(\mathfrak{M}^3_{1,1})$:

Corollary (Bödigheimer 2014)

There is a filtration of *K* which descends to the Morse complex.

Corollary (Bödigheimer 2014)

There is a filtration of *K* which descends to the Morse complex. The associated spectral sequence collapses at the second page.

The number of cells of the Morse complex $Morse(\mathfrak{M}^3_{1,1})$:

The number of cells of the Morse complex $Morse(\mathfrak{M}^3_{1,1})$:

The number of cells of the $0th$ page:

[Computational Results](#page-35-0)

Theorem (Wang 2011, B., Hermann 2014)

$$
H_*(\mathfrak{M}_{1,1}^4; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & * = 0 \\ \mathbb{Z} \oplus C_2 \oplus \cdots & * = 1 \\ C_2^3 \oplus \cdots & * = 2 \\ \mathbb{Z}^2 \oplus C_2^3 \oplus \cdots & * = 3 \\ \mathbb{Z}^3 \oplus C_2^2 \oplus \cdots & * = 4 \\ \mathbb{Z}^2 \oplus C_2 \oplus \cdots & * = 5 \\ \mathbb{Z} \oplus \cdots & * = 6 \\ 0 & * \ge 7 \end{cases}
$$

[Theoretical Results](#page-39-0)

• via embedded manifolds;

- via embedded manifolds:
- via operations applied to already known classes;

- via embedded manifolds:
- via operations applied to already known classes;

• *. . .*

- via embedded manifolds:
- via operations applied to already known classes;

• *. . .*

We proceed as follows.

- via embedded manifolds:
- via operations applied to already known classes;

• *. . .*

We proceed as follows.

• guess a representation;

- via embedded manifolds:
- via operations applied to already known classes;

• *. . .*

We proceed as follows.

- guess a representation;
- let the computer verify;

- via embedded manifolds:
- via operations applied to already known classes;

• *. . .*

We proceed as follows.

- guess a representation;
- let the computer verify;
- try again;

Fact (Arnold 1969, Fuks 1970)

The \mathbb{F}_2 homology of the inifite braid group is a graded polynomial ring

 $H_*(Br_{\infty}; \mathbb{F}_2) \cong \mathbb{F}_2[b_1, b_2, \ldots]$ with $|b_i| = 2^i - 1$.

Fact (Arnold 1969, Fuks 1970)

The \mathbb{F}_2 homology of the inifite braid group is a graded polynomial ring

 $H_*(Br_{\infty}; \mathbb{F}_2) \cong \mathbb{F}_2[b_1, b_2, \ldots]$ with $|b_i| = 2^i - 1$.

Fact (Bödigheimer 1990)

Using a similar model, the homology

$$
\bigoplus_{g,m} H_*(\mathfrak{M}^m_{g,1};\mathbb{F}_2)
$$

is a module over $\mathbb{F}_2[b_1, b_2, \ldots]$.

Theorem (B. 2015)

The homology

$$
\bigoplus_{g,m} H_*(\mathfrak{M}^m_{g,1};\mathbb{F}_2)
$$

is torsion free over $\mathbb{F}_2[b_1]$.

[Familiar Models and Spaces](#page-51-0)

There is a so called harmonic compactification $\overline{\mathfrak{M}}$ of \mathfrak{M} .

There is a so called harmonic compactification $\overline{\mathfrak{M}}$ of \mathfrak{M} . It is a cellular complex.

There is a so called harmonic compactification $\overline{\mathfrak{M}}$ of \mathfrak{M} . It is a cellular complex.

The cells are given by Sullivan diagrams.

Theorem (B., Egas Santander, Lutz 2015)

The harmonic compactification $\overline{\mathfrak{M}_{g,1}^m}$ is $(m-2)$ connected.

Theorem (B., Egas Santander 2015)

The stabilization map $\overline{\mathfrak{M}_{g,1}^m} \longrightarrow \overline{\mathfrak{M}_{g+1,1}^m}$ is a π_* -isomorphism for $* \le m + q - 3$.

Theorem (B., Egas Santander 2015)

The stabilization map $\overline{\mathfrak{M}_{g,1}^m} \longrightarrow \overline{\mathfrak{M}_{g+1,1}^m}$ is a π_* -isomorphism *for* $* \le m + q - 3$.

Theorem (B., Egas Santander 2015)

Considering parametrized outgoing boundaries, the stabilization map $\overline{\mathfrak{M}^m_{g,1}} \longrightarrow \overline{\mathfrak{M}^m_{g+1,1}}$ is a H_* -isomorphism for ∗ ≤ *g* − 1.

[Thank You](#page-59-0)