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Definition
Fix a topological surface S.

The moduli space M of Riemann
surfaces (of type S) is the space of complex structures (on S).

Question
What is the homology of this space?
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Fact
By uniformization, the sphere S2 admits a unique complex
structure.

Therefore, the moduli space of two-spheres is a
single point.

Fact
By uniformization, every torus is the quotient of C by a
lattice. Thus, it is determined by a point in the upper half
plane H. The moduli space of tori is M = H/SL(2,Z) ∼= D2.

Fact
There are several constructions for arbitrary surface types.
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The Model
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We consider surfaces (in our setting often called cobordisms)
• of genus g;

• with n incoming (parametrized) boundary curves;
• with m outgoing (unparametrized) boundary curves;

We use the following shorthand Mm
g,n.
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Theorem (Bödigheimer 1990)
The moduli space M = Mm

g,n is s finite cell complex. In
particular, its homology is computable in terms of a finite
chain complex K = K(Mm

g,n).
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Reductions
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Fact
The number of cells of every chain module grows factorially
O(h!) for h = 2g +m.
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Corollary (Ehrenfried 1998, Vicy 2010)
There is a discrete Morse flow on K.

The number of cells of
every chain module of the associated Morse complex grows
factorially O((h− 1)!).
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The number of cells of the bi-complex K(M3
1,1):

q = 5 640 12425 74610 202825 278600 189000 50400
q = 4 800 18500 122700 357280 516880 365400 100800
q = 3 240 7425 57375 185220 289380 217350 63000
q = 2 10 650 6800 26600 47740 39900 12600
q = 1 0 0 35 315 910 1050 420

p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

The number of cells of the Morse complex Morse(M3
1,1):

70 700 2520 4480 4270 2100 420
p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
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Corollary (Bödigheimer 2014)
There is a filtration of K which descends to the Morse
complex.

The associated spectral sequence collapses at the
second page.
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The number of cells of the Morse complex Morse(M3
1,1):

70 700 2520 4480 4270 2100 420
p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10

The number of cells of the 0th page:

p = 4 p = 5 p = 6 p = 7 p = 8 p = 9 p = 10
c = 1 70 640 1470
c = 2 60 1035 3850
c = 3 15 630 4130
c = 4 140 2100
c = 5 420
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Computational Results
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Theorem (Wang 2011, B., Hermann 2014)

H∗(M4
1,1;Z) ∼=



Z ∗ = 0
Z⊕ C2 ⊕ . . . ∗ = 1
C3

2 ⊕ . . . ∗ = 2
Z2 ⊕ C3

2 ⊕ . . . ∗ = 3
Z3 ⊕ C2

2 ⊕ . . . ∗ = 4
Z2 ⊕ C2 ⊕ . . . ∗ = 5
Z⊕ . . . ∗ = 6
0 ∗ ≥ 7
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Theorem (Wang 2011, B., Hermann 2014)

H∗(M2
2,1;Z) ∼=



Z ∗ = 0
C2

2 ⊕ C5 ⊕ . . . ∗ = 1
Z⊕ C2

2 ⊕ . . . ∗ = 2
Z3 ⊕ C4

2 ⊕ . . . ∗ = 3
Z⊕ C5

2 ⊕ C3
3 ⊕ . . . ∗ = 4

Z2 ⊕ C4
2 ⊕ C3 ⊕ . . . ∗ = 5

Z2 ⊕ C3
2 ⊕ . . . ∗ = 6

C2 ⊕ . . . ∗ = 7
0 ∗ ≥ 8
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Theorem (Wang 2011, B., Hermann 2014)

H∗(M0
3,1;Z) ∼=



Z ∗ = 0
0 ∗ = 1
Z⊕ C2 ∗ = 2
Z⊕ C2 ⊕ C3 ⊕ C4 ⊕ C7 ⊕ . . . ∗ = 3
C2

2 ⊕ C2
3 ⊕ . . . ∗ = 4

Z⊕ C2 ⊕ C3 ⊕ . . . ∗ = 5
Z⊕ C3

2 ⊕ . . . ∗ = 6
C2 ⊕ . . . ∗ = 7
0⊕ . . . ∗ = 8
Z⊕ . . . ∗ = 9
0 ∗ ≥ 10
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Theoretical Results
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We want to represent homology classes x ∈ H∗(Mm
g,n)

• via embedded manifolds;
• via operations applied to already known classes;
• . . .

We proceed as follows.
• guess a representation;
• let the computer verify;
• try again;
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Fact (Arnold 1969, Fuks 1970)
The F2 homology of the inifite braid group is a graded
polynomial ring

H∗(Br∞;F2) ∼= F2[b1, b2, . . .] with |bi| = 2i − 1 .

Fact (Bödigheimer 1990)
Using a similar model, the homology⊕

g,m

H∗(Mm
g,1;F2)

is a module over F2[b1, b2, . . .].
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Theorem (B. 2015)
The homology ⊕

g,m

H∗(Mm
g,1;F2)

is torsion free over F2[b1].
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Familiar Models and Spaces
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There is a so called harmonic compactification M of M.

It is a cellular complex.
The cells are given by Sullivan diagrams.
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Theorem (B., Egas Santander 2015)
The homology of Mm

g,1 is
g = 0

m ∗ H0 H1 H2 H3 H4 H5 H6 H7 H8

1 Z 0 0 0 0 0 0 0 0
2 Z Z 0 0 0 0 0 0 0
3 Z 0 0 Z 0 0 0 0 0
4 Z 0 0 Z 0 0 0 0 0
5 Z 0 0 0 0 Z 0 0 0
6 Z 0 0 0 0 Z 0 Z Z
7 Z 0 0 0 0 0 0 Z 0

g = 1

m ∗ H0 H1 H2 H3 H4 H5 H6 H7 H8 H9

1 Z 0 0 Z 0 0 0 0 0 0
2 Z C2 0 Z 0 0 0 0 0 0
3 Z 0 0 C3 0 Z2 Z 0 0 0
4 Z 0 0 C2 0 Z⊕ C2 C2 Z2 Z2 0
5 Z 0 0 0 0 0 Z Z5 Z3 C2

g = 2

m ∗ H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10

1 Z 0 Z C5 0 Z2 C3 0 0 0 0
2 Z C2 0 C2 0 Z⊕ C2 Z⊕ C2 Z2 Z⊕ C2 C2 0
3 Z 0 0 C3 C2 0 Z4 Z9 ⊕ C2 Z4 ⊕ C18 Z⊕ C2 Z

g = 3

m ∗ H0 H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11

1 Z 0 Z 0 Z C35 Z Z5 Z⊕ C12 0 C2 C2
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Theorem (B., Egas Santander, Lutz 2015)
The harmonic compactification Mm

g,1 is (m− 2) connected.
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Theorem (B., Egas Santander 2015)
The stabilization map Mm

g,1 −→Mm
g+1,1 is a π∗-isomorphism

for ∗ ≤ m+ g − 3.

Theorem (B., Egas Santander 2015)
Considering parametrized outgoing boundaries, the
stabilization map Mm

g,1 −→Mm
g+1,1 is a H∗-isomorphism for

∗ ≤ g − 1.
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Thank You
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