	The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
•	0000	00000000	000000	0000	0000	00000	

On computations of the homology of moduli spaces of Riemann surfaces

Felix Jonathan Boes

Max Planck Institute for Mathematics Bonn

23.09.2015

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
○ ●000	00000000	000000	0000	0000	00000	

The Question

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

 ○ ○ ● ○ ○ 	0000	0000	O

TL- 0

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

Definition

Fix a topological surface S.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

Definition

Fix a topological surface S. The moduli space \mathfrak{M} of Riemann surfaces (of type S) is the space of complex structures (on S).

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

Definition

Fix a topological surface S. The moduli space \mathfrak{M} of Riemann surfaces (of type S) is the space of complex structures (on S).

Question

What is the homology of this space?

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

By uniformization, the sphere S^2 admits a unique complex structure.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

Fact

By uniformization, every torus is the quotient of $\mathbb C$ by a lattice.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

Fact

By uniformization, every torus is the quotient of \mathbb{C} by a lattice. Thus, it is determined by a point in the upper half plane \mathbb{H} .

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

Fact

By uniformization, every torus is the quotient of \mathbb{C} by a lattice. Thus, it is determined by a point in the upper half plane \mathbb{H} . The moduli space of tori is $\mathfrak{M} = \mathbb{H}/SL(2,\mathbb{Z}) \cong D^2$.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

By uniformization, the sphere S^2 admits a unique complex structure. Therefore, the moduli space of two-spheres is a single point.

Fact

By uniformization, every torus is the quotient of \mathbb{C} by a lattice. Thus, it is determined by a point in the upper half plane \mathbb{H} . The moduli space of tori is $\mathfrak{M} = \mathbb{H}/SL(2,\mathbb{Z}) \cong D^2$.

Fact

There are several constructions for arbitrary surface types.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	•0000000					

The Model

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
	0000000					

• of genus g;

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
	0000000					

- of genus *g*;
- with *n* incoming (parametrized) boundary curves;

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
	0000000					

- of genus *g*;
- with *n* incoming (parametrized) boundary curves;
- with *m* outgoing (unparametrized) boundary curves;

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
	0000000					

- of genus g;
- with *n* incoming (parametrized) boundary curves;
- with m outgoing (unparametrized) boundary curves; We use the following shorthand $\mathfrak{M}_{a,n}^m$.

The Question The Mo	el Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 00000 000000	000000 00000	0000	0000	00000	

The Question The	e Model Redu	ctions Computational	l Results Theoretical I	Results Familiar Models	and Spaces Thank You
0 0000 00	00000 0000	0000 0000	0000	00000	

The Questic	on The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	0000000	000000	0000	0000	00000	

0 0000 0000000 00000 0000 0000 0000 0	The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
		000000000					

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	0000000	000000	0000	0000	00000	

Theorem (Bödigheimer 1990)

The moduli space $\mathfrak{M} = \mathfrak{M}_{g,n}^m$ is s finite cell complex. In particular, its homology is computable in terms of a finite chain complex $K = K(\mathfrak{M}_{g,n}^m)$.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0000	00000000	•00000	0000	0000	00000	

Reductions

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Questio	n The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

The number of cells of every chain module grows factorially $\mathcal{O}(h!)$ for h = 2g + m.

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0000	00000000	000000	0000	0000	00000	

Corollary (Ehrenfried 1998, Vicy 2010)

There is a discrete Morse flow on K.

The Question The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
	000000				

Corollary (Ehrenfried 1998, Vicy 2010)

There is a discrete Morse flow on K. The number of cells of every chain module of the associated Morse complex grows factorially O((h-1)!).

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
		000000				

The number of cells of the bi-complex $K(\mathfrak{M}^3_{1,1})$:

q = 5	640	12425	74610	202825	278600	189000	50400
q = 4	800	18500	122700	357280	516880	365400	100800
q = 3	240	7425	57375	185220	289380	217350	63000
q = 2	10	650	6800	26600	47740	39900	12600
q = 1	0	0	35	315	910	1050	420
	p = 4	p = 5	p = 6	p = 7	p = 8	p = 9	p = 10

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
		000000				

The number of cells of the bi-complex $K(\mathfrak{M}^3_{1,1})$:

q = 5	640	12425	74610	202825	278600	189000	50400
q = 4	800	18500	122700	357280	516880	365400	100800
q = 3	240	7425	57375	185220	289380	217350	63000
q = 2	10	650	6800	26600	47740	39900	12600
q = 1	0	0	35	315	910	1050	420
	p = 4	p = 5	p = 6	p = 7	p = 8	p = 9	p = 10

The number of cells of the Morse complex $Morse(\mathfrak{M}^{3}_{1,1})$:

70	700	2520	4480	4270	2100	420
p = 4	p = 5	p = 6	p = 7	p = 8	p = 9	p = 10

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

Corollary (Bödigheimer 2014)

There is a filtration of K which descends to the Morse complex.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
		000000				

Corollary (Bödigheimer 2014)

There is a filtration of K which descends to the Morse complex. The associated spectral sequence collapses at the second page.

The Question The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
	000000				

The number of cells of the Morse complex $Morse(\mathfrak{M}^{3}_{1,1})$:

70	700	2520	4480	4270	2100	420
p=4	p=5	p = 6	p = 7	p = 8	p = 9	p = 10

The Question The Mode	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
	00000				

The number of cells of the Morse complex $Morse(\mathfrak{M}^{3}_{1,1})$:

70	700	2520	4480	4270	2100	420
p=4	p = 5	p = 6	p = 7	p = 8	p = 9	p = 10

The number of cells of the 0^{th} page:

	p=4	p = 5	p = 6	p = 7	p = 8	p = 9	p = 10
c = 1	70	640	1470				
c = 2		60	1035	3850			
c = 3			15	630	4130		
c = 4					140	2100	
c = 5							420

The Questio	n The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

Computational Results

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Question The Model Redu	luctions Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000 000000 000	0000 0000	0000	00000	

Theorem (Wang 2011, B., Hermann 2014)

$$H_*(\mathfrak{M}^4_{1,1}; \mathbb{Z}) \cong \begin{cases} \mathbb{Z} & * = 0 \\ \mathbb{Z} \oplus C_2 \oplus \overline{\cdots} & * = 1 \\ C_2^3 \oplus \overline{\cdots} & * = 2 \\ \mathbb{Z}^2 \oplus C_2^3 \oplus \overline{\cdots} & * = 3 \\ \mathbb{Z}^3 \oplus C_2^2 \oplus \overline{\cdots} & * = 4 \\ \mathbb{Z}^2 \oplus C_2 \oplus \overline{\cdots} & * = 4 \\ \mathbb{Z}^2 \oplus C_2 \oplus \overline{\cdots} & * = 5 \\ \mathbb{Z} \oplus \overline{\cdots} & * = 6 \\ 0 & * \ge 7 \end{cases}$$

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 0000	00000000	000000	0000	0000	00000	

Theorem (Wang 2011, B., Hermann 2014)							
$H_*(\mathfrak{M}^2_{2,1};\mathbb{Z})\cong \mathcal{A}$	$\begin{cases} \mathbb{Z} \\ C_2^2 \oplus C_5 \oplus \cdots \\ \mathbb{Z} \oplus C_2^2 \oplus \cdots \\ \mathbb{Z}^3 \oplus C_2^4 \oplus \cdots \\ \mathbb{Z} \oplus C_2^5 \oplus C_3^3 \oplus \cdots \\ \mathbb{Z}^2 \oplus C_2^4 \oplus C_3 \oplus \cdots \\ \mathbb{Z}^2 \oplus C_2^4 \oplus \cdots \\ \mathbb{C}_2 \oplus \cdots \\ 0 \end{cases}$	$ \begin{array}{l} * = 0 \\ * = 1 \\ * = 2 \\ * = 3 \\ * = 4 \\ * = 5 \\ * = 6 \\ * = 7 \\ * \ge 8 \end{array} $					

The Model Reductions Computational Results Theoretical Results Familiar Models and Spaces Thank You

Felix Jonathan Boes - Max Planck Institute for Mathematics Bonn

0000

The Question

0 0000

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
				•000		

Theoretical Results

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
				0000		

The	Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0 000					0000		

• via embedded manifolds;

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
				0000		

- via embedded manifolds;
- via operations applied to already known classes;

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
				0000		

- via embedded manifolds;
- via operations applied to already known classes;

• . . .

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You	
				0000			

- via embedded manifolds;
- via operations applied to already known classes;

• . . .

We proceed as follows.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
				0000		

- via embedded manifolds;
- via operations applied to already known classes;

• . . .

We proceed as follows.

• guess a representation;

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
				0000		

- via embedded manifolds;
- via operations applied to already known classes;

• . . .

We proceed as follows.

- guess a representation;
- let the computer verify;

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
				0000		

- via embedded manifolds;
- via operations applied to already known classes;

• . . .

We proceed as follows.

- guess a representation;
- let the computer verify;
- try again;

	The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
С	0000	00000000	000000	0000	0000	00000	

Fact (Arnold 1969, Fuks 1970)

The \mathbb{F}_2 homology of the inifite braid group is a graded polynomial ring

 $H_*(Br_\infty;\mathbb{F}_2)\cong\mathbb{F}_2[b_1,b_2,\ldots]$ with $|b_i|=2^i-1$.

	The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0	0000	00000000	000000	0000	0000	00000	

Fact (Arnold 1969, Fuks 1970)

The \mathbb{F}_2 homology of the inifite braid group is a graded polynomial ring

 $H_*(Br_\infty; \mathbb{F}_2) \cong \mathbb{F}_2[b_1, b_2, \ldots]$ with $|b_i| = 2^i - 1$.

Fact (Bödigheimer 1990)

Using a similar model, the homology

$$\bigoplus_{g,m} H_*(\mathfrak{M}^m_{g,1}; \mathbb{F}_2)$$

is a module over $\mathbb{F}_2[b_1, b_2, \ldots]$.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
				0000		

Theorem (B. 2015)

The homology

$$\bigoplus_{q,m} H_*(\mathfrak{M}^m_{g,1}; \mathbb{F}_2)$$

is torsion free over $\mathbb{F}_2[b_1]$.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
					00000	

Familiar Models and Spaces

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
					0000	

There is a so called harmonic compactification $\overline{\mathfrak{M}}$ of \mathfrak{M} .

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
					00000	

There is a so called harmonic compactification $\overline{\mathfrak{M}}$ of \mathfrak{M} . It is a cellular complex.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
					00000	

There is a so called harmonic compactification $\overline{\mathfrak{M}}$ of \mathfrak{M} . It is a cellular complex. The cells are given by Sullivan diagrams.

he Question	The Mode	el Red	uctions	Comput 0000	ational f	Results	Theoreti 0000	cal Resul	ts Fami 00●	iliar Mode 00	ls and Spaces	Thank O	
The	orem ((R	Foas	: San	tand	er 20)15)						
THE		(D.,	-5u	Jour	curra								
The	home	log	$\sqrt{1}$	$\overline{\mathfrak{m}^{m_{\star}}}$	is								
		nogy	01 2	a $g,1$	15								
g = 0													
<i>m</i> *	H_0	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8				
1	Z	0	0	0	0	0	0	0	0				
2	Z	Z	0	0	0	0	0	0	0				
3	Z	0	0	Z	0	0	0	0	0				
4	Z	0	0	Z	0	0	0	0	0				
5	Z	0	0	0	0	Z	0	0	0				
6	Z	0	0	0	0	Z	0	\mathbb{Z}	\mathbb{Z}				
7	Z	0	0	0	0	0	0	Z	0				
g = 1													
<i>m</i> *	H_0	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8	H_9			
1	Z	0	0	Z	0	0	0	0	0	0			
2	Z	C_2	0	Z	0	0	0	0	0	0			

3		\mathbb{Z}	0	0	C_3	0	\mathbb{Z}^2	Z	0	0	0		
4		\mathbb{Z}	0	0	C_2	0	$\mathbb{Z} \oplus C_2$	C_2	\mathbb{Z}^2	\mathbb{Z}^2	0		
5		\mathbb{Z}	0	0	0	0	0	Z	\mathbb{Z}^5	\mathbb{Z}^3	C_2		
g = 2													
m	*	H_0	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8	H_9	H_{10}	
1		\mathbb{Z}	0	Z	C_5	0	\mathbb{Z}^2	C_3	0	0	0	0	
2		\mathbb{Z}	C_2	0	C_2	0	$\mathbb{Z} \oplus C_2$	$\mathbb{Z} \oplus C_2$	\mathbb{Z}^2	$\mathbb{Z} \oplus C_2$	C_2	0	
3		\mathbb{Z}	0	0	C_3	C_2	0	\mathbb{Z}^4	$\mathbb{Z}^9 \oplus C_2$	$\mathbb{Z}^4 \oplus C_{18}$	$\mathbb{Z} \oplus C_2$	Z	
g = 3													
m	*	H_0	H_1	H_2	H_3	H_4	H_5	H_6	H_7	H_8	H_9	H_{10}	H_{11}
1		\mathbb{Z}	0	Z	0	Z	C_{35}	Z	\mathbb{Z}^5	$\mathbb{Z} \oplus C_{12}$	0	C_2	C_2

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
					00000	

Theorem (B., Egas Santander, Lutz 2015)

The harmonic compactification $\overline{\mathfrak{M}_{q,1}^m}$ is (m-2) connected.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
					00000	

Theorem (B., Egas Santander 2015)

The stabilization map $\overline{\mathfrak{M}_{g,1}^m} \longrightarrow \overline{\mathfrak{M}_{g+1,1}^m}$ is a π_* -isomorphism for $* \leq m + g - 3$.

The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
					00000	

Theorem (B., Egas Santander 2015)

The stabilization map $\overline{\mathfrak{M}_{g,1}^m} \longrightarrow \overline{\mathfrak{M}_{g+1,1}^m}$ is a π_* -isomorphism for $* \leq m + g - 3$.

Theorem (B., Egas Santander 2015)

Considering parametrized outgoing boundaries, the stabilization map $\overline{\mathfrak{M}_{g,1}^m} \longrightarrow \overline{\mathfrak{M}_{g+1,1}^m}$ is a H_* -isomorphism for $* \leq g-1$.

	The Question	The Model	Reductions	Computational Results	Theoretical Results	Familiar Models and Spaces	Thank You
0	0000	00000000	000000	0000	0000	00000	•

Thank You

Felix Jonathan Boes — Max Planck Institute for Mathematics Bonn