
ADVANCED ALGEBRA 1: MODULAR FORMS

DR. EDGAR ASSING

Abstract. In this lecture we will cover the basic theory of modular forms and
applications to quadratic forms. The exercises and their solutions as well as
some additional remarks were kindly added by Alberto Acosta Reche. I would
like to thank all the students that followed the course and helped me to fix many
typos. However, be aware there are probably more typos! For personal use only.
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We assume familiarity with complex analysis as covered for example in:

• Complex Analysis: An Introduction to The Theory of Analytic Functions
of One Complex Variable by L. Ahlfors.

In the beginning we will have a brief look at the theory of elliptic functions à la
Eisenstein. More on this can be found in

• Elliptic Functions according to Eisenstein and Kronecker by André Weil.

Some good books on modular forms are for example:
1



ADVANCED ALGEBRA 1: MODULAR FORMS 2

• Topics in classical automorphic forms by H. Iwaniec;
• Introduction to the arithmetic theory of automorphic forms by G. Shimura;
• Modular forms by T. Miyake.
• Introduction to Elliptic Curves and Modular Forms by N. Koblitz.

1. Ouvertüre

Historically there has been much interest in computing elliptic integrals:∫ z

a

dt√
P (t)

,

where P (t) is a (complex) polynomial of degree 3 or 4. (Technically this is an ellip-
tic integral of the first kind.) Such integrals arise geometrically when computing
the arc length of ellipses and also come up in physics.

Example 1.0.1. In 1718 Fagano studied

E(x) =

∫ x

0

dx√
1− t4

,

which satisfies the peculiar law

E(x) + E(x) = E

(
2x
√

1− x4

1 + x4

)
.

It is a remarkable fact, that the inverse function of an elliptic integral is an
elliptic function. This is a doubly periodic meromorphic function. It turns out
that many interesting properties of elliptic integrals can be obtained from a general
theory of elliptic functions. This motivates a systematic study of the latter and
ultimately leads to modular forms.

As the name suggests a doubly periodic function f : C → C has two R-linear
independent periods u, v ∈ C:

f(z + u) = f(z + v) = f(z).

This naturally leads to the lattice Γ ⊆ C with generators u, v. Thus

Γ = {γ = µu+ νv : µ, ν ∈ Z} ⊆ C.

Observe that the quotient v
u

can not be real so that we can write

v

u
= δ · τ,

where δ = δ(u, v) ∈ {±1} and τ ∈ H = {z ∈ C : Im(z) > 0}. Further lets set
q = e(τ) = e2πiτ . We use the branch

√
q = e(τ/2) of the square root. Finally

observe that |q| = e−2π Im(τ) < 1 and uv − uv = −2πiδA for A > 0.
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Exercise 1, Sheet 0: Let Γ = uZ + vZ be a lattice in C (i.e. u, v are R-linearly
independent). Suppose that Γ′ = u′Z + v′Z is a sub-lattice of Γ. Show that there
is a 2× 2 matrix A ∈M2×2(Z) ∩GL2(Q) such that

(u′ v′) = (u v) · A (1)

Further show that δ′ = sgn(det(A))δ and [Γ : Γ′] = | det(A)|. (Recall that v
u

= δ ·τ
and v′

u′
= δ′τ ′ with δ, δ′ ∈ {±1} and τ, τ ′ ∈ H).

Solution. As u′, v′ ∈ Γ := uZ + vZ we can find unique a, b, c, d ∈ Z such that
u′ = du+ cv and v′ = bu+ av. In matrix form this is written as(

u′ v′
)

=
(
u v

)(d b
c a

)
Because Γ′ is also a lattice, the vectors u′, v′ are R-linearly independent. Therefore,
the matrix A = ( d bc a ) has rank 2 over R and must be in GL2(R). By the formula for
the inverse we see that A ∈ GL2(Q), as desired. For the assertion about imaginary
parts, we calculate

τ ′ = δ′
v′

u′
= δ′

av + bu

cv + du
= δ′

aδτ + b

cδτ + d
= δ′

(aδτ + b) (cδτ + d)

|cδτ + d|2

= δ′
ac|τ |2 + bd+ δ(ad+ bc)Re(τ) + iδ(ad− bc)Im(τ)

|cδτ + d|2

As both Im(τ), Im(τ ′) > 0, we deduce δ′ = δ · sgn(det(A)), as desired. For the
last assertion, we can bring A to its Smith normal form by D = BAC with
B,C ∈ GL2(Z) and

D =

(
d1 0
0 d2

)
where di ∈ Z>0, and d1|d2

Replacing A by BAC simply replaces the basis (u, v) of Γ by (u, v)B and the
basis (u′, v′) of Γ′ by (u′, v′)C−1, but the lattices remain the same. Therefore, this
operation does not change the index [Γ : Γ′], and we can assume A = D without
loss of generality. From this presentation it is clear that Γ′\Γ ' Zd1 ×Zd2 , so that
[Γ : Γ′] = d1d2 = det(D) = | det(A)|, as desired. �

We define the series

En(x) = En(x; Γ) =
∑
γ∈Γ

(x+ γ)−n.

For n ≥ 3 the series is absolutely convergent. On the other hand for n = 1, 2 the
summation is to be understood as follows:

En(x) =
∑
γ∈Γ

(E)
(x+ γ)−n = lim

N→∞

N∑
ν=−N

(
lim
M→∞

M∑
µ=−M

(x+ µu+ νv)−n

)
.
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In this case the resulting function depends on the choice of generators u, v and we
write En(x) = En(x;u, v) if it is necessary to highlight this dependence.

Remark 1.0.2. This is a generalization of the one dimensional series

εn(x) =
∑
µ∈Z

(E)
(x+ µ)−n = lim

M→∞

M∑
µ=−M

(x+ µ)−n, (2)

where the limiting process is of course only necessary for n = 1. The attentive
reader will immediately realize that

ε1(x) = π cot(πx).

Indeed this can be proved in the following way:

(1) Observe that both sides define meromorphic functions of period 1 with
poles at the integers.

(2) Observe that the residues are all 1.
(3) Deduce that the difference g(z) defines a entire function of period 1.
(4) Observe that both sides remain bounded when |Im(z)| → ∞.
(5) Deduce, by Liouville’s theorem, that g(z) is constant. Since g is odd, it

must be identically 0.

One can also check directly that both sides tend to πi when Im(z)→ −∞. Write
z = x+ iy. For the right hand side

πi
e(z) + 1

e(z)− 1
= πi+

2πi

e2πixe−2πy − 1
→ πi

when y → −∞. For the series, write

1

z + µ
=

x+ µ

(x+ µ)2 + y2
− i y

(x+ µ)2 + y2

The series
∑

µ
y

(x+µ)2+y2 converges absolutely for every y 6= 0. Therefore, we can

write

ε1(z) = lim
N→∞

N∑
µ=−N

x+ µ

(x+ µ)2 + y2
− i
∑
µ

y

(x+ µ)2 + y2

When y → −∞ the first term tends to 0, while the second tends to πi by the
definition of Riemann integration, since the derivative of arctan(t) is 1

1+t2
.

Exercise 2, Sheet 0: Use this definition (2) to show that

εn(z) =
1

zn
+ (−1)n

∞∑
m≥dn

2
e

(
2m− 1

n− 1

)
γ2mz

2m−n

for small z, where

γ2m = 2
∞∑
µ=1

µ−2m.
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Proof. Recall the binomial power series

(1 + z)α =
∞∑
k=0

(
α

k

)
zk where

(
α

k

)
=
α(α− 1) · · · (α− k + 1)

k!

valid for α ∈ R and |z| < 1, absolutely convergent for these z. The case relevant
to us is α = −n, where we have

(1 + z)−n =
∞∑
k=0

(−1)k
(
n+ k − 1

n− 1

)
zk

Inserting this expansion in the definition of εn we see that

εn(z) =
1

zn
+ lim

N→∞

N∑
|µ|=1

µ−n
∞∑
k=0

(−1)k
(
n+ k − 1

n− 1

)
zk

µk

(we sum µ from −N to N omitting 0). If n+ k ≥ 2, then the double series above
converges absolutely because of

∑∞
µ=1 µ

−k−n ≤
∑∞

µ=1 µ
−2 < ∞ and the absolute

convergence of (3). Therefore, if n ≥ 2 we can swap the summation, observe that
the summation over µ vanishes if the exponent is odd, and write k + n = 2m for
m ≥ dn/2e to arrive at

εn(z) =
1

zn
+ (−1)n

∞∑
m≥dn

2
e

(
2m− 1

n− 1

)
γ2mz

2m−n

as desired. For n = 1 we do the same after noting that the only problematic
summation over µ, for k = 0, vanishes since the exponent is odd. �

Remark 1.0.3. Note that one can define the (even) Bernoulli numbers B2m via the
power series:

1

2
· e

t + 1

et − 1
=

1

t
−
∞∑
m=1

(−1)mB2m
t2m−1

(2m)!

Thus once the identity

ε1(z) = π · cot(πz) = πi
e(z) + 1

e(z)− 1

is established one can compare coefficients in the two expansions and obtain

γ2m = (2π)2m · B2m

(2m)!

Lemma 1.0.4. We have En(−x) = (−1)n ·En(x) for n ≥ 1. Furthermore we have

d

dx
En(x) = −nEn+1(x) for n ≥ 1.

Proof. While the first statement is clear, for the second statement we have to
justify term-wise differentiation. �
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Lemma 1.0.5. We have

En(x;u, v) = u−nεn

(x
u

)
+ u−n

∞∑
ν=1

(
εn

(
x+ νv

u

)
+ εn

(
x− νv
u

))
(3)

and the right hand side is absolutely convergent.

Proof. The formula is easily verified by expressing the inner sum in terms of εn.
The crux of the matter is to show absolute convergence. We write

ζ =
x

u
and z = e(ζ).

Also recall v
u

= ±τ and q = e(τ). We will use the formula1

ε1(x) = π cot(πx) = πi · e(x) + 1

e(x)− 1
.

It is now easily verified that

ε1(
x+ νv

u
) + ε1(

x− νv
u

) = −2πi

(
1

1− qνz
− 1

1− qνz−1

)
.

Absolute convergence follows now from the estimate

2π

∣∣∣∣ 1

1− qνz
− 1

1− qνz−1

∣∣∣∣ ≤ C · |q|ν , (4)

with C = C(z) ∈ R+ and ν sufficiently large.
For n ≥ 2 we write the series as

En(x) = u−n
∑
ν∈Z

(E)
εn(ζ + ντ).

Observe that

εn(ζ) =
(−1)n−1

(n− 1)!
· d

n−1

dζn−1
ε1(ζ) =

(−2πi)n

(n− 1)!

(
z
d

dz

)n−1(
1

1− z

)
.

We obtain

εn(ζ + ντ) =
(−2πi)n

(n− 1)!

(
z
d

dz

)n−1(
1

1− qνz

)
=

(−2πi)n

(n− 1)!

∞∑
d=1

dn−1qνdzd (5)

for large ν > 0. This can be bounded by C|q|ν for some constant C = C(z)
as before. The case ν < 0 is treated similarly and one easily obtains absolute
convergence. �

1We take it for granted, but it can be derived from the series definition given in (3) directly.



ADVANCED ALGEBRA 1: MODULAR FORMS 7

Lemma 1.0.6. Let Γ ⊆ C be a lattice generated by u, v ∈ C. Then we have

E1(x+ γ0;u, v) = E1(x;u, v)− 2πiδ · ν0

u
,

for γ0 = µ0u + ν0v ∈ Γ. Furthermore, for n ≥ 2 we have En(x + γ0;u, v) =
En(x;u, v).

Proof. We write γ0 = ν0v + µ0u. Note that ε1(x) has period 1, so that by (3) we
can assume µ0 = 0. For ν0 > 0 we compute

E1(x+ ν0v)− E1(x) = u−1 · lim
N→∞

(
N+ν0∑
ν=N+1

ε1

(
x+ νv

u

)
−
−N−1+ν0∑
ν=−N

ε1

(
x+ νv

u

))
.

Observing that ε1(x+νv
u

) approaches ±πi as νδ → ∓∞ we get

E1(x+ ν0v)− E1(x) = −2πiδν0

u

as desired. It is easy to verify the case ν0 < 0. �

Lemma 1.0.7. Let Γ′ be a sub-lattice of Γ with generators u′ and v′ and let R
be a set of representatives for Γ/Γ′. (The case Γ′ = Γ with R = {0} is included!)
Then we have ∑

γ∈R

E1(x+ γ;u′, v′) = E1(x;u, v) +
2πiδcx

uu′
− πiδ′ν

u′
,

where δ′ = δ(u′, v′) and

2
∑
γ∈R

γ = µu′ + νv′.

Proof. We write(
u′ v′

)
=
(
u v

)
·
(
a b
c d

)
for a, b, c, d ∈ Z with N = ad− bc 6= 0.

Note that ]R = [Γ: Γ′] = |N |. Furthermore, δ′ = δ · sgn(N). Without loss of
generality we can assume that 0 ∈ R.

We set E′n(x) =
∑

γ∈R En(x + γ;u′, v′). Note that for n ≥ 3 we have E′n(x) =

En(x), because the defining series is absolute convergent and E′n amounts to a
re-ordering of the sum. Thus, by differentiating we get

E′1(x)− E1(x;u, v) = Ax+B.

We will compute A and B using the formulae

Au = E′1(x+ u)− E′1(x) and 2B = E′1(−x) + E′1(x).

We write

r + u = r1 + w1(r) and − r = r2 + w2(r)
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with r1, r2 ∈ R and w1(r), w2(r) ∈ Γ′. Note that r → r1 as well as r → r2 are
permutations of R. We can write

wi(r) = µi(r)u
′ + νi(r)v

′ for i = 1, 2.

Opening the definition of E ′1 we find that

Au =
∑
r∈R

E1(x+ u+ r;u′, v′)−
∑
r∈R

E1(x+ r;u′, v′)

=
∑
r∈R

[E1(x+ w1(r);u′, v′)− E1(x;u′, v′)]

= −2πiδ′

u′

∑
r∈R

ν1(r).

Similarly one finds

2B =
2πiδ′

u′

∑
r∈R

ν2(r).

On the other hand we have

0 =
∑
r∈R

(r1+w1(r)−r−u) =
∑
r∈R

(w1(r)−u) =

(∑
r∈R

µ1(r)

)
u′+

(∑
r∈R

ν1(r)

)
v′−|N |u.

Writing u = 1
N

(u′d− cv′) and comparing coefficients yields∑
r∈R

ν1(r) = −cδ
δ′
.

This completes the computation of A. To get B we observe

0 =
∑
r∈R

(r + r2 + w2(r)) = 2
∑
r∈R

r +

(∑
r∈R

µ2(r)

)
u′ +

(∑
r∈R

ν2(r)

)
v′.

�

Corollary 1.0.8. Let M ∈ SL2(Z) and write
(
u′ v′

)
=
(
u v

)
·M . Then we have

E2(x;u′, v′) = E2(x;u, v)− 2πiδc

uu′
where M =

(
a b
c d

)
.

Proof.

E2(x;u′, v′) = − d

dx
E1(x;u′, v′) = − d

dx
[E1(x;u′, v′)+

2πiδcx

uu′
] = E2(x;u, v)−2πiδc

uu′
.

�

Lemma 1.0.9. Let x be close to 0. Then we have

En(x) =
1

xn
+ (−1)n

∞∑
m=dn

2
e

(
2m− 1

n− 1

)
e2mx

2m−n (6)
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with

e2m =
(2πi)2m

u2m · (2m− 1)!

(
(−1)mB2m

2m
+ 2

∞∑
k=1

σ2m−1(k)qk

)
,

where σs(k) =
∑

d|k d
s.

Proof. We start by writing

E1(x) =
1

2
[E1(x)− E1(−x)] =

1

x
+

1

2

∑
γ∈Γ\{0}

(E)
(

1

x+ γ
− 1

−x+ γ

)

=
1

x
−

∑
γ∈Γ\{0}

(E)
∞∑
m=1

x2m−1

γ2m
.

In the second line we have used the geometric series which is justified if |x| < |γ|
for all γ ∈ Γ \ {0}. Noting that everything but the part coming from m = 1 is
absolutely convergent allows us to write

E1(x) =
1

x
−
∞∑
m=1

emx
m−1

with em = 0 for odd m and

e2 =
∑

γ∈Γ\{0}

(E)
γ−2 and e2m =

∑
γ∈Γ\{0}

γ−2m,

for m ≥ 2. The expression (6) (with the convention that
(

2m−1
n−1

)
= 0 for m < n) is

obtained by repeated differentiation.
It remains to give an alternative description of the coefficients e2m. To do so we

recall (5). For |q| < |z| < |q|−1 we can write

En(x) = u−nεn(ζ) +
(2π)n

(iu)n(n− 1)!

∞∑
ν=1

∞∑
d=1

dn−1qνd[zd + (−1)nz−d].

We observe that e2m = limx→0 E2m(x)− x−2m. Before we continue we recall that2

εn(x) =
1

xn
+ (−1)n

∞∑
m=dn

2
e

(
2m− 1

n− 1

)
γ2mx

2m−n

with

γ2m = 2
∞∑
µ=1

µ−2m = (2π)2m B2m

(2m)!
.

In particular we have limζ→0(ε2m(ζ) − ζ−2m) = γ2m. Since with x → 0 we have
ζ → 0 and z → 1 we directly get the desired formula. �

2This can be obtained by differentiating the well known expansion of the cotangent. Otherwise
arguments similar to those conducted here apply to (2).
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Remark 1.0.10. Note that the coefficients e2m obviously depend on the generators
u, v of Γ (or at least on the lattice). Thus we better write e2m = e2m(u, v).
Furthermore it follows directly from Lemma 1.0.7 that

e2(u′, v′) = e2(u, v)− 2πiδc

uu′
and e2m(u′, v′) = e2m(u, v) for m ≥ 2, (7)

where (
u′ v′

)
=
(
u v

)(a b
c d

)
︸ ︷︷ ︸
∈SL2(Z)

.

Remark 1.0.11. Note that

E2(x)− e2 = x−2 +
∑

γ∈Γ\{0}

[(x+ γ)−2 − γ−2].

However, the latter function is precisely the Weierstrass ℘-function. (In particular,
the series is actually absolutely convergent.)

Our next goal is to prove some relations (for example functional equations)
between the functions En.

Lemma 1.0.12. We have

E2(x)E2(x′)− E2(x)E2(x+ x′)− E2(x′)E2(x+ x′)

= 2E3(x+ x′)[E1(x) + E1(x′)] +
2πiδ

u

∂

∂v
E2(x+ x′;u, v).

Proof. We first recall that

En(x) = u−n
∑
ν

(E)
εn

(x
u

+
νv

u

)
.

To shorten notation we put ζ = x
u

and τ = v
u

assuming δ = 1.
Now for ζ1, ζ2 we have the functional equation3

ε2(ζ1)ε2(ζ2)− ε2(ζ1)ε2(ζ1 +ζ2)− ε2(ζ2)ε2(ζ1 +ζ2) = 2ε3(ζ1 +ζ2)[ε1(ζ1)+ ε1(ζ2)]. (8)

Putting ζ1 = ζ + ντ and ζ2 = ζ ′ + (ρ − ν)τ . Then we sum both sides of (8) first

over ν (using the summation order
∑(E)) and then over ρ. Note that on the left

hand side we only encounter n = 2 where we have absolute convergence. This
allows us to rearrange the sums to obtain

u4[E2(x)E2(x′)− E2(x)E2(x+ x′)− E2(x′)E2(x+ x′)],

where we have written x = ζu and x′ = ζ ′u.

3This identity can be checked by recalling that ε1(x) = π cot(πx) and ε2(x) = (π/ sin(πx))2.
(Otherwise one can deduce it directly from the series definition of εn.)
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Let us consider the right hand side of (8). After summing over ν we have

2uε3(ζ + ζ ′ + ρτ)[E1(x) + E1(x′ + δρv)]

= 2uε3(ζ + ζ ′ + ρτ)[E1(x) + E1(x′)− 2πiρ

u
].

The first two terms are easily summed over ρ, giving

2u4E3(x+ x′)[E1(x) + E1(x′)].

The result follows after observing

− 2ρε3(ζ + ζ ′ + ρτ) =
d

dτ
ε2(ζ + ζ ′ + ρτ)

and then executing the ρ-sum. �

Corollary 1.0.13. The following identities hold:

a)

2πiδ

u
· ∂
∂v

E2(x;u, v) = 3E4(x;u, v)− 2E1(x;u, v)E3(x;u, v)− E2(x;u, v)2

b)

(E2(x)− E2(x′)) (E1(x+ x′)− E1(x)− E1(x′)) + E3(x)− E3(x′) = 0

This was Exercise 3, Sheet 1:

Proof. Recall Lemma 1.0.12 where it was proved that

2πiδ

u

∂

∂v
E2(x+ x′;u, v) = E2(x)E2(x′)− E2(x)E2(x+ x′)− E2(x′)E2(x+ x′)

− 2E3(x+ x′) (E1(x) + E1(x′))

We evaluate this expression when x 6∈ Γ and x′ → 0. We show that, although
there are poles at x′ = 0 on the right hand side, they cancel out. To see this, recall
that d

dx
En(x) = −nEn+1(x). We obtain Taylor developments

E2(x+ x′) = E2(x)− 2x′E3(x) + 3(x′)2E4(x) +O((x′)3)

E3(x+ x′) = E3(x)− 3x′E4(x) +O((x′)2)

and noting that E1(x′) = 1
x′

+O(1) and E2(x′) = 1
(x′)2 +O(1) we see that the limit

of right hand side when x′ → 0 is

2πiδ

u

∂

∂v
E2(x)

= lim
x′→0

[
E2(x′) (E2(x)− E2(x+ x′))− 2E3(x+ x′)E1(x′)

]
− E2(x)2 − 2E3(x)E1(x)

= lim
x′→0

[
2

x′
E3(x)− 3E4(x)− 2

x′
E3(x) + 6E4(x) +O(x′)

]
− E2(x)2 − 2E3(x)E1(x)

= 3E4(x)− 2E1(x)E3(x)− E2(x)2
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which proves part a). For part b), denote the left hand side by B(x, x′). We have

∂

∂x
B(x, x′) = −2E3(x)E1(x+ x′) + 2E3(x)E1(x) + 2E3(x)E1(x′)− E2(x)E2(x+ x′)

+ E2(x′)E2(x+ x′) + E2(x)2 − E2(x′)E2(x)− 3E4(x)

= −2E3(x)E1(x+ x′) + 2E3(x)E1(x′)− E2(x)E2(x+ x′)

+ E2(x′)E2(x+ x′)− E2(x′)E2(x)− 2πiδ

u

∂

∂v
E2(x;u, v)

where we used part a) to simplify. Now, if we first substitute x′ 7→ −x′ and then
x 7→ x+x′ and recall that E1(−x′) = −E1(x′) and E2(−x′) = E2(x′), we obtain the
identity of Lemma 1.0.12. Thus, we have arrived at ∂

∂x
B(x, x′) ≡ 0. By symmetry,

we also have ∂
∂x′
B(x, x′) ≡ 0. Since B(x, x) ≡ 0 by inspection, we deduce that

B ≡ 0, as desired. �

Theorem 1.0.14. We have

E2
3 = (E2 − e2)3 − 15e4(E2 − e2) + 10(c− e2e4)

for

c = −πiδ
2u
· ∂e4

∂v
.

Furthermore,
2πiδ

u
· ∂E1

∂v
= E3 − E1E2. (9)

Proof. We start from the identity given in Lemma 1.0.12. For fixed x we view
both sides of the identity as a function in x′′ = x + x′. Expanding around x′′ = 0
and comparing the constant term yields

E4(x) = E2(x)2 − 2e2 · E2(x)− 2πiδ

u
· ∂e2

∂v
(u, v).

Expanding this again at x = 0 and considering the constant terms gives

2πiδ

u
· ∂e2

∂v
(u, v) = 5e4 − e2

2.

Combining these two identities gives

E4(x) = (E2(x)− e2)2 − 5e4.

By differentiation one can reduce the first claimed identity to this. The second
identity follows by integrating the first formula from Corollary 1.0.13. �

Remark 1.0.15. Of course the result given in the theorem above strongly resembles
the famous equation

(℘′)2 = 4℘3 − g2℘− g3

with g2 = 60e4 and g3 = 140e6. Note that in the proof we also encountered
℘′′ = 6℘2 − 1

2
g2.
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We write ∏
n∈Z

(E)
pn =

M∏
n=−M

pn ·
∞∏

n=M+1

(pnp−n).

Note that we understand infinite products by taking the logarithm. We will always
(if not otherwise stated) use the principal branch. We define the special infinite
products

f(t, x) =
∏
w

(E)
(1− t

x+ w
) =

∏
ν

(E)∏
µ

(E)
(

1− t

x+ µu+ νv

)
and ϕ(x) = x

∏
w 6=0

(E)
(1− x

w
).

To see that the definition of ϕ makes sense we write

log(ϕ(x)) = log(x) +
∑
|w|≤|x|

log(1− x

w
) +

∑
|w|>|x|

(E)
∞∑
n=1

1

n
(x/w)n.

The pieces for n ≥ 3 are all absolutely convergent and the terms coming from
n = 1, 2 are still well-defined when summing them in the specified order.

Remark 1.0.16. A different approach would be to consider the σ-function, which
is defined by the absolutely convergent Weierstrass (canonical) product

σ(x) = x
∏
w 6=0

(1− x

w
)e

x
w

+ x2

2w2 .

Then ϕ(x) = σ · e−e2x2/2.

We make the following observations:

E1(x) =
d

dx
log(ϕ(x)),

f(t, x) =
ϕ(x− t)
ϕ(x)

and

ϕ(t) = −[xf(t, x)]x=0. (10)

Lemma 1.0.17. We have

ϕ(x) =
u

2πi
· Xq(z)

P (q)2
,

where P (q) =
∏∞

ν=1(1− qν),

Xq(z) = (z
1
2 − z−

1
2 )
∞∏
ν=1

(1− qνz)(1− qνz−1),

q = e(τ) and z = e(x
u
).
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Proof. From the definition we get

f(t, x) =
∏
ν

(E)∏
µ

(E)
(

1− t

x+ µu+ νv

)
︸ ︷︷ ︸

=
sin(π(x−t+νvu ))

sin(π(x+νv
u ))

=Pν

.

We put ζ∗ = (x−t)
u

and z∗ = e(ζ∗). One easily verifies that

P0 =
(z∗)

1
2 − (z∗)−

1
2

z
1
2 − z− 1

2

and PνP−ν =
(1− qνz∗)(1− qν(z∗)−1)

(1− qνz)(1− qνz−1)
.

Thus we have actually seen that

f(t, x) =
Xq(z

∗)

Xq(z)
.

The result follows by using (10). The factor u
2πi

comes from the contribution of
limx→0

x

x
1
2−x−

1
2

= u
2πi

. �

Lemma 1.0.18. Let γ =

(
d b
c a

)
∈ SL2(Z) and assume that δ = 1. Then we have

Xq′(z
′) = Xq(z) · (cτ + d)−1P (q′)2

P (q)
e

(
cζζ ′

2

)
,

for

τ ′ =
aτ + b

cτ + d
, q′ = e(τ ′), ζ ′ =

ζ

cτ + d
and z′ = e(ζ ′).

Proof. Looking closely at log f(t, x) and using the Taylor expansion of the loga-
rithm (at 1) reveals that the sums remaining in

log(f(t, x)) + t
∑
γ∈Γ

(E)
(x+ γ)−1 +

t2

2

∑
γ∈Γ

(E)
(x+ γ)−2

are absolutely convergent. In particular the remainder depends only on Γ and not
on the basis u, v. In view of the transformation behavior of E1 and E2 we obtain
directly that

f(t, x;u′, v′) = f(t, x;u, v) · e
( c

2uu′
(t2 − 2xt)

)
.

The proof is easily completed with the help of (10) and Lemma 1.0.17. �

Lemma 1.0.19. We have

ϕ(x+ µu+ νv) = (−1)µ+νϕ(x)e
(
−δν x

u
− δν2 v

2u

)
.



ADVANCED ALGEBRA 1: MODULAR FORMS 15

Proof. One first checks that

Xq(q
νz) = q−ν

2/2(−z)−νXq(z). (11)

The result follows from Lemma 1.0.17. �

Lemma 1.0.20. We have

Xq(z) =
1

P (q)
T (q, z), for T (q, z) = z

1
2

∞∑
n=−∞

(−1)nq(n2+n)/2zn.

Proof. One starts by formally writing

Xq(z) = z
1
2

∑
n∈Z

Fn(q)zn+ 1
2 .

This will be absolutely convergent for z 6= 0 since |q| < 1. From (11) we deduce
that

Fn+ν(q) = (−1)νFn(q) · q(ν2+ν+2nν)/2.

Rearranging the sum yields

Xq(z) = F0(q)T (q, z).

It remains to identify F0(q). This is done as follows. We first check by differen-
tiation that

E2(x)−E1(x)2 = − 1

ϕ(x)
·∂

2ϕ(x)

∂x2
and E3(x)−E1(x)E2(x) =

1

2

∂

∂x

(
1

ϕ(x)
· ∂

2ϕ(x)

∂x2

)
.

In view of (9) we get

∂

∂x

(
1

ϕ(x)
· ∂

2ϕ(x)

∂x2
− 4πiδ

uϕ(x)

∂ϕ(x;u, v)

∂v

)
= 0.

We conclude that the quantity in the brackets is constant (as function of x). By
computing its value at 0 one finds

1

ϕ(x)
· ∂

2ϕ(x)

∂x2
− 4πiδ

uϕ(x)

∂ϕ(x;u, v)

∂v
= −3e2.

It is then straight forward to obtain the equation

∂2T

∂x2
− 4πiδ

u
· ∂T
∂v

+
π2

u2
T = 0

for T (q, z). This gives

4πiδ

u
· ∂
∂v

log(FP−2) = 3e2 −
π2

u2
.

On the other hand, from the definition of P one obtains

∂

∂v
log(P (q)) = −2πiδ

u

∞∑
ν=1

νqν

1− qν
.
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This lets us obtain

e2 = −4πiδ

u
· ∂
∂v

log(q
1
24P (q)).

We conclude that FP−2 and P−3 differ only by a constant factor. Since F and P
are both 1 at q = 1 this factor is one and we must have F = P−1 as claimed. �

Exercise 1, Sheet 2: Recall the function

T (q, z) = z
1
2

∑
n∈Z

(−1)nq(n2+n)/2zn

from the lecture notes.

a) Show that T (q4, q2) = T
(
q, iq

1
2

)
· e
(

1
8
− 3τ

4

)
, where q = e(τ) and τ ∈ H as

usual.
b) Use the identity Xq(z) = F0(q) · T (q, z) to show that F0(q4)P (q4) =

F0(q)P (q).
c) Show that limq→0 F0(q) = 1 and deduce that F0(q) = P (q)−1.

Solution. On the one hand

T (q4, q2) = q
∑
n∈Z

(−1)nq2n2+2nq2n =
∑
n∈Z

(−1)nq2n2+4n+1

while, on the other hand

T
(
q, iq

1
2

)
= e

π
4
iq

1
4

∑
n∈Z

(−1)nq(n2+n)/2inqn/2 = e
π
4
i
∑
n∈Z

(−1)ninqn
2/2+n+1/4 (12)

We observe that n2/2 +n = m2/2 +m exactly when n = m or n+m = −2. Thus,
in equation (12) we can pair the terms with n + m = −2. Looking modulo 4 we
see that only the odd terms survive. Thus, we can rewrite the above as

T
(
q, iq

1
2

)
= −e

π
4
i
∑
k∈Z

i2k+1q(2k+1)2/2+2k+1+1/4 = −ie
π
4
i
∑
k∈Z

(−1)kq2k2+4k+7/4

If we compare this with (12) and recall e(z) = e2πiz we obtain part a).

For the claim of part b), note that using part a) and the identity Xq(z) =
F0(q) · T (q, z), the claim is equivalent to

Xq4(q2)P (q4) = e

(
1

8
− 3τ

4

)
Xq(iq

1/2)P (q)

Recall that

Xq(z) := (z
1
2 − z−

1
2 )
∞∏
ν=1

(1− qνz)(1− qνz−1) and P (q) :=
∞∏
ν=1

(1− qν)
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Thus we find

Xq4(q2)P (q4) = (q − q−1)
∞∏
ν=1

(1− q4ν+2)(1− q4ν−2)(1− q4ν) (13)

In the infinite triple product, the term (1− q2) and the terms (1− q4ν) for ν ≥ 1
appear once, while the terms for ν ≥ 1 appear twice. On the other hand

Xq(iq
1
2 )P (q) = (e

πi
4 q

1
4 − e−

πi
4 q−

1
4 )

(
∞∏
ν=1

(1− iqν+1/2)(1 + iqν−1/2)

)
(1− qν)

We pair the terms (1− iqν+1/2) and (1 + iqν+1/2) whose product equals (1 + q2ν+1),
thus we obtain

Xq(iq
1
2 )P (q) = (e

πi
4 q

1
4 − e−

πi
4 q−

1
4 )(1 + iq

1
2 )
∞∏
ν=1

(1 + q2ν+1)(1− qν)

now we pair the terms of the first product with the terms (1 + q2ν+1) with the
terms (1− q2ν+1), to obtain (1− q4ν+2). We can rewrite the above as

Xq(iq
1
2 )P (q) = (e

πi
4 q

1
4 − e−

πi
4 q−

1
4 )(1 + iq

1
2 )(1− q)

∞∏
ν=1

(1− q4ν+2)(1− q2ν) (14)

We observe that in the infinite double product, the term (1 − q2) and the terms
(1 − q4ν) for ν ≥ 1 appear exactly once, while the terms (1 − q4ν+2) for ν ≥ 1
appear twice. Comparing (13) with (14) we see that

Xq4(q2)P (q4) =
(q − q−1)

(e
πi
4 q

1
4 − e−πi4 q− 1

4 )(1 + iq
1
2 )(1− q)

Xq(iq
1
2 )P (q)

Simplifying the factor we get

(q − q−1)

(e
πi
4 q

1
4 − e−πi4 q− 1

4 )(1 + iq
1
2 )(1− q)

= e
πi
4 q−3/4 q2 − 1

(iq1/2 − 1)(1 + iq1/2)(1− q)
= e

πi
4 q−3/4

and we have proved part b).

For part c), first observe that T (0, z) = (z
1
2 − z−

1
2 ) = X0(z) directly from the

definitions. By the identity Xq(z) = F0(q) · T (q, z) we obtain F0(0) = 1. Also,
P (0) = 1 from the definition. Thus, F0(0)P (0) = 1. Seeing F0 and P as functions
of q, both are holomorphic on the disk |q| < 1. Thus G(q) := F0(q)P (q) is an
holomorphic function on |q| < 1 with G(q4) = G(q) and G(0) = 1. Looking at
the power series development, G(q) =

∑∞
n=0 anq

n, and using G(q4) = G(q) we see
that an 6= 0 only for n multiple of 4. Repeating the argument, an 6= 0 only for n
multiple of 16, and proceeding inductively the only nonzero term is a0 = 1. We
deduce that F0(q) = P (q)−1, as desired. �
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Remark 1.0.21. Usually one write η(τ) = q
1
24P (q). We have in particular seen

above that

e2 = −4πi

u2

d

dτ
log(η(τ)).

Recall transformation formula e2(u′, v′) = e2(u, v) − 2πi c
uu′

, where u′ = cv + du,

v′ = av + bu, ad − bc = 1 and v
u
∈ H.4 We set τ ′ = aτ+b

cτ+d
= v′

u′
and observe that

dτ ′

dτ
=
(
u
u′

)2
. We compute

d

dτ
log

η(τ ′)

η(τ)
=

d

dτ
log(η(τ ′))− d

dτ
log(η(τ))

= − u2

4πi
(e2(u′, v′)− e2(u, v))

=
1

2
· u

cv + du
· c =

1

2
· c

cτ + d

=
d

dτ
log(cτ + d)

1
2 .

Integrating and exponentiating yields

η(
aτ + b

cτ + d
) = εg · (cτ + d)

1
2 · η(τ), for g =

(
a b
c d

)
∈ SL2(Z), (15)

for some constant εg depending on g =

(
a b
c d

)
. The constant εg is very interesting

and we will come back to it later.

Finally we come back to Theorem 1.0.14. Note that for w ∈ Γ \ 2Γ we have

E3(
w

2
) = E3(−w

2
) = −E3(

w

2
).

In particular we must have E3(u
2
) = E3(v

2
) = E3(u+v

2
) = 0. Thus we write

(E2(x)− e2)3 − 15e4(E2(x)− e2)− 35e6

= E3(x)2 = (E2(x)− E2(
u

2
))(E2(x)− E2(

v

2
))(E2(x)− E2(

u+ v

2
)).

Taking the discriminant on both sides gives the formula

4(15e4)3−27(35e6)2 = [(E2(
u+ v

2
)−E2(

u

2
))(E2(

u

2
)−E2(

u+ v

2
))(E2(

u

2
)−E2(

v

2
))]2.

(16)

4Note the difference to (7), where a and d are swapped.
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It can be computed that

E2(
u+ v

2
)− E2(

u

2
) =

16π2

u2
q

1
2T1(q)4,

E2(
u

2
)− E2(

u+ v

2
) =

π2

u2
T2(q)4 and

E2(
u

2
)− E2(

v

2
) =

π2

u2
T3(q)4.

The functions Ti(q) are given by the series

T1(q) =
1

2

∑
n∈Z

q(n2+n)/2 = P (q2)2P (q)−1,

T2(q) =
∑
n∈Z

(−1)nqn
2/2 = P (q

1
2 )2P (q)−1 and

T3(q) =
∑
n∈Z

qn
2/2 = P (q)5P (q2)−2P (q

1
2 )−2,

but most importantly they satisfy

T1(q)T2(q)T3(q) =
1

2

∑
n∈Z

(−1)n(2n+ 1)q(n2+n)/2 = P (q)3.

Thus after artificially adding a factor of 24 to both sides of (16) we obtain

∆̃ = g3
2 − 27g2

3 = 243352(20e3
4 − 49e2

6) =

(
2π

u

)
12qP (q)24 =

(
2π

u

)12

η24. (17)

2. Satz I: The Basic Theory of Modular Forms

We will now introduce the basic theory of automorphic forms in quite some
generality.

2.1. The Hyperbolic Plane and Fuchsian groups. The hyperbolic plane is
up to isometry the unique simply connected hyperbolic surface.5 A (for us) very
convenient model is the upper half plane:

H = {z = x+ iy ∈ C : y > 0} equipped with ds2 =
dx2 + dy2

y2
.

Given a matrix γ ∈ SL2(R) we associate the Möbius transfomration

γz =
az + b

cz + d
, where γ =

(
a b
c d

)
.

This defines a transitive action of SL2(R) on H. Note that the centre of SL2(R)
is {±1} and it acts trivially. Therefore we will often work with PSL2(R) =

5A hyperbolic surface is a smooth surface equipped with a complete Riemannian metric of
constant Gaussian curvature −1.
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{±1}\SL2(R).6

Exercise 1, Sheet 1: Let A = ( a bc d ) ∈ SL2(C). Recall the Möbius transformation

fA : C→ C given by

fA(z) =
az + b

cz + d
and fA(∞) =

a

c

a) Show that every Möbius transformation has at least one fixpoint in C.
b) Suppose that fA has exactly one fixed point in C. Show that there is

B ∈ SL2(C) and b ∈ C such that

B−1AB = ±
(

1 b
0 1

)
(18)

c) Let A ∈ SL2(C). Show that fA maps the upper half-plane H onto itself if
and only if A ∈ SL2(R).

Solution. We look for z = az+b
cz+d

, or equivalently, cz2 + (d−a)z− b = 0. If c = 0,∞
is a fixed point, and if in addition d 6= a, then b/(d− a) is the second fixed point.
On the other hand, if c 6= 0, the equation is equivalent to(

z +
d− a

2c

)2

− b

c
− (d− a)2

4c2
=

(
z +

d− a
2c

)2

− (a+ d)2 − 4

4c2

where we used det(A) = ad− bc = 1. Therefore, the equation has at most 2 fixed
points, at least 1, and exactly 1 if and only if the trace satisfies |Tr(A)| = |a+d| = 2.

For part b), note that fA ◦ fB = fAB. Also, recall the fact that for any two
3-tuples of distinct points (z1, z2, z3) and (w1, w2, w3) there is exactly one Möbius
transformation that satisfies f(z1) = w1, f(z2) = w2 and f(z3) = w3. For the
existence, consider

fz1,z2,z3(z) =
z1 − z3

z1 − z2

z − z2

z − z3

which sends (z1, z2, z3) to (1, 0,∞). Then the transformation f−1
w1,w2,w3

◦ fz1,z2.z3
sends (z1, z2, z3) to (w1, w2, w3). If two Möbius transformations fA, fB send (z1, z2, z3)
to (w1, w2, w3), then f−1

B ◦ fA fixes three points, and therefore fA = fB.

Coming back to the proof of part b), if fA has exactly one fixed point, after
conjugating we can assume that the fixed point is ∞. Thus c = 0 and from the
reasoning in part a) above, as fA has only one fixed point, we must have a = d.
As 1 = det(A) = ad− bc = a2 we have a = ±1, as desired.

6For us an element in PSL2(R) will just be represented by a 2 × 2 matrix. This is of course
up to multiplication by ±1, which we will usually suppress in the notation.
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For part c), if A ∈ GL2(R), then for z ∈ H we have

fA(z) =
az + b

cz + d
=

(az + b)(cz + d)

|cz + d|2
=
ac|z|2 + (ad+ bc)Re(z) + i(ad− bc)Im(z)

|cz + d|2

and thus fA(z) ∈ H if and only if det(A) > 0. For the other direction, recall the
one-point compactification C := C∪{∞} of C, which has the topology that agrees
with usual one on C and such that the open neighbourhoods of {∞} are the sets
(C \ {K})∪ {∞} for compacts K ⊂ C7. Also, recall that Möbius transformations
act by homeomorphisms on C. The boundary of H in C is R := R∪{∞}, and since
fA is a homeomorphism of C that sends H onto itself, it must send its boundary
onto itself, that is, fA(R) = R bijectively. Letting (z1, z2, z3) be the preimages of
(1, 0,∞), we have fA = fz1,z2,z3 by the uniqueness above. Since z1, z2, z3 are real
(or maybe one of them is∞), then, by the formula for fz1,z2,z3 above, fz1,z2,z3 = fB
for a matrix B ∈ GL2(R). Since fB sends H onto itself, we have det(B) > 0, and
since scalar matrices act like the identity, we can assume B = SL2(R). Therefore
A = λB for some B ∈ SL2(R), and taking determinants λ = ±1, so A ∈ SL2(R),
as desired. �

Remark 2.1.1. We have seen the upper half plane before. Indeed starting with a
lattice Γ = Zu+ Zv ⊆ C we associated τ = δ v

u
∈ H for δ ∈ {±1}. After swapping

u and v if necessary we can assume that δ = 1. Note that, if(
v′

u′

)
=

(
a b
c d

)
︸ ︷︷ ︸
=g∈SL2(R)

(
v
u

)
,

then we have

τ ′ =
aτ + b

cτ + d
= gτ.

On the other hand, given τ ∈ H we can associate the lattice

Γ̃ = Z · 1 + Z · τ.

The lattice Γ̃ is similar to Γ in the sense that it can be obtained from it by rotation
and dilation.

Lemma 2.1.2. The group of orientation preserving isometries of H is the group
PSL2(R) acting via Möbius transformations.

Proof. Orientation preserving isometries of H are precisely conformal automor-
phisms of the upper half plane. It is a classical result that such maps are (real)
Möbius transformations.

7With this topology C is homeomorphic to S2 as one sees from stereographic projection.
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Let us check that the Möbius transforamtion given by T =

(
a b
c d

)
is an isom-

etry. We compute

Im(Tz) =
Im(z)

|cz + d|2
and

d

dz
Tz = T ′(z)

1

(cz + d)2
.

We get

T ∗(ds2) =
|T ′(z)dz|2

Im(Tz)2
=
|dz|2

Im(z)2
= ds2.

�

Remark 2.1.3. Another model for the hyperbolic plane is the Poncaré disc

B = {z ∈ C : |z| < 1} with ds2 = 4
dx2 + dy2

(1− |z|2)2
.

The map z 7→ z−i
z+i

provides an isometry between the two.

The boundary of the upper half plane is ∂H = R ∪ {∞}.

Lemma 2.1.4. The geodesics of H are precisely the arcs of circles intersecting ∂H
orthogonally.

Proof. We start by computing the geodesic arc connecting two points ia and ib
with 0 < a < b. Let η(t) = x(t) + iy(t) be curve connecting these two points. Its
length is given by

l(η) =

∫ t2

t1

√
x′(t)2 + y′(t)2

y(t)
dt

≥
∫ t2

t1

y′(t)|
y(t)

dt

≥
∫ t2

t1

(log(y(t)))′dt = log(b/a).

The minimum is attained if and only if y′(t) > 0 and x′(t) = 0. We conclude that
the path along the y-axis is the path of shortest distance and thus a geodesic.

The general case is reduced to this one via Möbius transformations. �

The previous lemma shows that for two distinct points z1, z2 ∈ H ∪ ∂H there is
a unique geodesic segment, denoted by [z1, z2] connecting these two points. The
hyperbolic distance is given by

d(z1, z2) = l([z, w]).

One can check that

cosh(d(z1, z2)) = 1 +
|z1 − z2|2

2y1y2

,

for z1, z2 ∈ H.
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We equip H with the PSL2(R) invariant measure

dµ(z) = y−2dxdy.

Elements in PSL2(R) are classified according to their fixed points.

Definition 2.1.1. A non-trivial element γ ∈ PSL2(R) is

• elliptic if |tr(γ)| < 2; (In this case γ has one fixed point within H.)
• parabolic if |tr(γ)| = 2; (In this case γ has a single degenerate fixed point

in ∂H.)
• hyperbolic if |tr(γ)| > 2; (In this case γ has two fixed points in ∂H.)

Definition 2.1.2. A subgroup Γ ⊆ PSL2(R) is said to act properly discontinuous
(on H) if for each compact set C ⊆ H and z ∈ H the intersection Γz ∩ C is finite.

Definition 2.1.3. A Fuchsian group is a discrete subgroup of PSL2(R).

Lemma 2.1.5. A subgroup Γ ⊆ PSL2(R) acts properly discontinuous if and only
if it is Fuchsian.

Proof. If Γ is Fuchsian, then Γz is discrete. This implies that C ∩ Γz is discrete
and compact and therefore finite.

Assume that Γ acts properly discontinuous. We first show that there are points
in H that are not fixed by any non-trivial element in H. To do so take γw = w
and any z ∈ H. Then one has

d(Tz, z) ≤ d(Tz, Tw) + d(tw, z) = 2d(z, w).

Thus only finitely many points in any neighborhood of z can be fixed by non-trivial
elements of Γ.

In particular we can fix some w not fixed by any element of Γ \ {1}. If Γ is not
discrete, there is a sequence γk → 1 contained in Γ. However, the sequence {γnw}
consists of distinct points and γnw → w as n→∞. This is a contradiction. �

Remark 2.1.6. It is an important theorem of Heinz Hopf that given a hyperbolic
surface X, there is a Fuchsian group Γ ⊆ PSL2(R) without elliptic elements so
that X ∼= Γ\H. Note that in general, if Γ contains elliptic points then technically
speaking Γ\H is an orbifold (and not a smooth surface).

Definition 2.1.4. A fundamental domain F ⊆ H for a Fuchsian group Γ is a
closed region such that

ΓF = H
and for each non-trivial γ ∈ Γ the interiors of F and γF are disjoint.

Fundamental domains will play a crucial role for us. For w ∈ H we associate
the Dirichlet domain

Dw = {z ∈ H : d(z, w) ≤ d(z, γw) for all γ ∈ Γ}.
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It turns out that if w not the fixed point of an elliptic element in Γ, then Dw is
a fundamental domain. Furthermore, Dw is convex and bounded by a union of
geodesics. One can even see that the sides of a Dirichlet domain can be used to
find nice generating sets for Γ.

Definition 2.1.5. A Fuchsian group is geometrically finite if there is a fundamen-
tal domain that is fa finite sided convex polygon.

Theorem 2.1.7. For a Fuchsian group Γ the following are equivalent:

• Γ\H is topologically finite (i.e. finite Euler characteristic);
• Γ is finitely generated;
• Γ is geometrically finite.

Proof. Omitted. �

Lemma 2.1.8. Let Γ be a Fuchsian group and let z ∈ H∪∂H. Then the stabilizer

Γz = {γ ∈ Γ: γz = z}
is cyclic.

Proof. We will use the fact that two elements γ, γ′ ∈ PSL2(R) commute if and
only if the have the same fixed point set. The result is now obvious since discrete
subgroups of SO2, R and R× are cyclic. �

Definition 2.1.6. A Fuchsian group is said to be of the first kind, if every point
in ∂H is a limit point of Γ. (A point in ∂H is a limit point Γ if it is a limit point
of some orbit Γz for z ∈ H.)

Remark 2.1.9. A theorem due to Poincaré and Fricke-Klein classifies the possibil-
ities for a limit set Λ(Γ) of a Fuchsian grou Γ. There are three possibilities:

• Λ(Γ) has 0, 1 or 2 points. (In this case Γ is called elementary.)
• Λ(Γ) = ∂H. (In this case Γ is said to be of the first kind.)
• Λ(Γ) is a perfect nowhere-dense subset of ∂H. (In this case Γ is said to be

of the second kind.)

Lemma 2.1.10. Every geometricall finite Fuchsian group of the first kind has
a fundamental domain of finite volume. (Furthermore, a Fuchsian group with a
fundamental domain of finite volume is of the first kind.)

Proof. See for example Discontinuous groups by C. L. Siegel (1943). �

Throughout we will restrict ourselves to geometricall finite Fuchsian groups of
the first kind. These come in two flavors. If the fundamental domain is compact,
then wecall Γ a co-compact group.

Lemma 2.1.11. A geometrically finite Fuchsian group of the first kind is co-
compact if and only of it has no parabolic elements.
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Proof. We will argue by contradiction and assume that Γ contains a parabolic
element. Without loss of generality we can assume that this element fixes ∞.

We first show that there is cΓ > 0 so that every

(
a b
c d

)
satisfies c = 0 or

|c| ≥ cΓ. To see this we suppose that Γ∞ is generated by

(
1 h
0 1

)
. Now take

σ =

(
a b
c d

)
with 0 < |c| ≤ 1. Among the matrices

σn,m =

(
1 h
0 1

)m
σ

(
1 h
0 1

)n
there is one, say σ′ with

1

(1 + |h|)2
≤ Im(σ′i) ≤ 1 and 0 ≤ Re(σ′i) ≤ |h|.

But this is a finite set which contains only finitely many elements of the orbit Γi.
Now define

U = {z ∈ H : Im(z) >
1

cΓ

}.

Given γ ∈ Γ \ Γ∞ (i.e. bottom left entry is non-zero) we observe that for z ∈ U
we have γz 6∈ U . We can take a sequence zn ∈ U with zn →∞. Since two distinct
points in this sequence can not be Γ equivalent we obtain infinitely many distinct
points in Γ\H. If the latter is compact, then there must be an accumulation point
τ . We can take a compact neighborhood C of τ and a neighbourhood V of∞ with
ΓV ∩C = ∅. But by construction of the sequence zn there must be elements of zn
in V . This is a contradiction. �

The basic example of a Fuchsian group of the first kind is PSL2(Z).

Lemma 2.1.12. The group SL2(Z) is generated by the matrices

T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
.

Furthermore, a fundamental domain for PSL2(Z) is given by

F = {Z = x+ iy : |x| ≤ 1

2
, |z| ≥ 1}.

Proof. We first note that S2 = −1 and we compute

S ·
(
a b
c d

)
=

(
−c −d
a b

)
.

On the other hand we have

T n
(
a b
c d

)
=

(
a+ cn b+ dn
c d

)
.
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The procedure is now easy. Given any element γ =

(
a b
c d

)
we apply T n with a

suitable choice of n so that T nγ =

(
a′ b′

c d

)
with 0 ≤ a < |c. Then we apply S.

Repeating the process allows us to create an upper triangular matrix, which then
is ±1 times a power of T .

We turn towards the fundamental domain. For z ∈ H we consider the lattice

Λ = Z + Zz.
The shortest vector (a, b) ∈ Λ gives rise to the element z′ ∈ Γz with the largest
imaginary part:

Im(z′) =
Im(z)

|cz + d|2
.

Without loss of generality we can assume that −1
2
≤ Re(z′) ≤ 1

2
. We claim

that |z′| ≥ 1. Indeed of |z′| < 1, then Sz′ has larger imaginary part, which is a
contradiction.

It remains to be seen that elements in z1, z2 ∈ F◦ are inequivalent. Suppose
that z2 = γz1 and Im(z1) ≥ Im(z2). This implies that

|cz1 + d|2 =
Im(z1)

Im(z2)
≤ 1.

This implies that |c Im(z1)| ≤ 1 and because z1 ∈ F◦ we have c ≤ 1. The case
c = 0 is easily handled. Let us assume c = 1, then we can write

γ =

(
a ad− 1
1 d

)
= T aST d.

We see that w1 = z1−a and w2 = z2 +d satisfy w1 = Sw2 and |w1|, |w2| ≥ 1. This
implies that z1, z2 must be on the boundary. �

Remark 2.1.13. The fundamental domain can be used to compute the co-volume
of PSL2(Z) (i.e. the volume of the fundamental domain with respect to the hyper-
bolic measure dµ(z)). Further, it can be seen from the fundamental domain that
PSL2(Z) is not co-compact. (One can also just note that T is a parabolic element
and apply Lemma 2.1.11.)

Exercise 2, Sheet 2: Determine all parabolic and elliptic conjugacy classes
of SL2(Z) and find the corresponding fixed points in the standard fundamental
domain.

Solution. Recall that A ∈ SL2(R) is elliptic if and only if |Tr(A)| < 2 and parabolic
when |Tr(A)| = 2 but A 6= ±Id. Equivalently, A is elliptic when it has a simple
fixed point in H (not in the ideal boundary), and A is parabolic when it has a
double fixed point in R ∪ {∞}. For A ∈ SL2(Z), we have Tr(A) ∈ Z. Therefore,
the only posibilities for the trace of an elliptic A ∈ SL2(Z) are Tr(A) = −1, 0, 1.
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After multiplying by −Id if necessary we can assume that Tr(A) = 0 or 1. Recall
also that D := {x + iy | −1

2
≤ x ≤ 1

2
and x2 + y2 ≥ 1} is a fundamental domain

for SL2(Z).

Let zA be the fixed point of the elliptic element A ∈ SL2(Z) with Tr(A) ∈ {0, 1}.
By definition of the fundamental domain, there is B ∈ SL2(Z) such that BzA ∈ D.
Thus, C = BAB−1 is an elliptic element with fixed point BzA in the fundamental
domain. As can be checked easily, the formula for the fixed point is

zC :=
a− d+

√
(a+ d)2 − 4

2c
where C =

(
a b
c d

)
where have to choose the square root so that zC ∈ H. If Tr(C) = 0 then d = −a
and the fixed point is zC = (a + i)/|c|. As zC ∈ D, we have 2|a| ≤ |c| and
a2 + 1 ≥ c2. The only possibility is |c| = 1 and a = 0. Therefore, in this case

C = ±ω0 = ±
(

0 −1
1 0

)
with fixed point i.

Suppose now that Tr(C) = 1. Then d = 1− a and zC = (2a− 1 +
√

3i)/(2|c|). As
zC ∈ D we have |2a− 1| ≤ |c| and |2a− 1|2 + 3 ≥ 4|c|2. Thus |c| = 1 and a = 0 or
a = 1. This leads to the four possibilities

ω1 :=

(
1 −1
1 0

)
, ω2 :=

(
0 1
−1 1

)
, ω3 :=

(
0 −1
1 1

)
, ω4 :=

(
1 1
−1 0

)
Note that ω−1

0 ω3ω0 = ω1 and ω−1
0 ω4ω0 = ω2. However, ω1 and ω2 are not conjugate

over SL2(R). Indeed, the equality(
a+ b −a
c+ d −c

)
=

(
a b
c d

)(
1 −1
1 0

)
=

(
0 1
−1 1

)(
a b
c d

)
=

(
c d

−a+ c −b+ d

)
leads to a+d = 0 and d = b−c. Together with ad−bc = 1 we obtain −b2+bc−c2 =
1, which is impossible if b, c ∈ R. Observe also that ω0 and −ω0 are not conjugate
over SL2(R). Indeed, the equations(

−c −d
a b

)
=

(
0 −1
1 0

)
·
(
a b
c d

)
=

(
a b
c d

)
·
(

0 1
−1 0

)
=

(
−b a
−d c

)
lead to a = −d and b = c so that 1 = −a2−b2 < 0, a contradiction. Therefore, a list
of pairwise not conjugate elliptic elements in SL2(Z) is given by {ω0, ω1, ω2,−ω0,−ω1,−ω2}.
Working on PSL2(Z), equivalently, working with the group of Möbius transforma-
tions induced by matrices in SL2(Z), the list is given by {fω0 , fω1 , fω2}, with fixed

points i, 1+
√

3i
2

and −1+
√

3i
2

respectively.

Consider now a parabolic element in SL2(Z), say

A =

(
a b
c d

)
∈ SL2(Z), Tr(A) = 2
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By hypothesis, A has a double fixed point with formula zA := 1−d
c

, in particular
zA ∈ Q ∪ {∞}. Recall that the action of SL2(Z) on Q ∪ {∞} is transitive.8 Thus
after a conjugation we can assume without loss of generality that the double fixed
point of A is at infinity. Since Tr(A) = 2, we arrive at the conclusion that A must
be equal to

An :=

(
1 n
0 1

)
for some n ∈ Z\{0}. Suppose that An, Am are conjugate in SL2(Z) for n 6= m. In

that case we could find

(
a b
c d

)
with integers entries and determinant 1 such that(

a an+ b
c cn+ d

)
=

(
a b
c d

)
·
(

1 n
0 1

)
=

(
1 m
0 1

)
·
(
a b
c d

)
=

(
a+mc b+md

c d

)
As m,n 6= 0, we deduce c = 0, and thus ad = 1. As a, d ∈ Z we must have
a = d, which implies n = m. Therefore, a list of the parabolic conjugacy classes in
SL(2,Z) is {An} ∪ {−An} with fixed point ∞ (An is not conjugate to −Am since
the traces are different). On PSL(2,Z) the list is {fAn}. �

Another important example are the so called (Hecke) congruence subgroups

Γ0(N) =

{(
a b
c d

)
∈ SL2(Z) : N | c

}
of level N ∈ N. Note that

[SL2(Z) : Γ0(N)] = N ·
∏
p|N

(
1 +

1

p

)
.

This will be proved in Proposition 4.1.7 below.

Exercise 3, Sheet 2: Show that Γ0(4) is generated by(
−1 0
0 −1

)
,

(
1 1
0 1

)
and

(
1 0
4 1

)
.

Solution. First, observe that this matrices are in Γ0(4). Next, consider an arbitrary
element of Γ0(4), of the form

A =

(
a b
4c d

)
a, b, c, d ∈ Z.

Let’s look at the pair (a, 4c). If c = 0 we skip the following discussion. Otherwise,
we perform a series of transformation by multiplying on the left by powers of

8Given r ∈ Q, write it as r = a/c for coprime integers, (a, c) = 1. Then find b, d ∈ Z such that

da− bc = 1 (this is possible by Bezout’s theorem). Then for A :=

(
a b
c d

)
we have A ∈ SL2(Z)

and A∞ = a
c = r, proving transitivity.
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the generators above. Operation 1 consists of multiplying by

(
1 x
0 1

)
on the left,

which has the effect (a, 4c) 7→ (a+ 4cx, 4c) =: (a1, 4c1). By euclidean division, we
can choose a unique x ∈ Z such that |a1| ≤ |2c| = 2|c1|. Since (a1, c1) = 1, we

actually have |a1| < 2|c1|. Operation 2 consists of multiplying by

(
1 0
4y 1

)
on the

left, which has the effect (a1, 4c1) 7→ (a1, 4ya1 + 4c) =: (a2, 4c2). We can choose
a unique y such that |c2| ≤ |a1|/2 = |a2|/2, and since (a2, 4c2) = 1, we actually
have 2|c2| < |a2|. While cn 6= 0 we apply the operations alternating between the
two. If |a| > 2|c| we start applying operation 1, and if |a| < 2|c| we start applying
operation 2. Since after any operation |an+1| + |cn+1| < |an| + |cn| the process
has to stop, and it must be cn = 0. Thus after multiplying on the left by certain
powers of generators we arrive at

B =

(
r s
0 t

)
∈ SL2(Z).

Because r, s, t ∈ Z and rs = det(B) = 1 we must have either r = 1 = t or
r = −1 = t. After multiplying by −Id if necessary we can assume we are in the
first case, but then

B =

(
1 1
0 1

)s
and we are finished. �

Remark 2.1.14. Note that, Γ0(4) = α−1Γ(2)α, where α = diag(2, 1). Therefore,
the exercise is equivalent to proving that Γ(2) is generated by(

−1 0
0 −1

)
,

(
1 2
0 1

)
,

(
1 0
2 1

)
One can prove that, in fact, the elements T1 :=

(
1 2
0 1

)
and T2 :=

(
1 0
2 1

)
have

no nontrivial relations, and that {−I2} does not belong the group they generate,
so that Γ(2) ' F2 × (Z/2Z), where F2 is the free group in the two generators T1

and T2. There is a beautiful classical proof of this fact, which we now present.

As usual, let fA be the Möbius transformation associated to a matrix A ∈ GL2(C).
Consider the Möbius transformation

fA(z) := −iz − 1

z + 1

It satisfies fA(0) = i, fA(1) = 0, fA(−1) =∞ and fA(i) = 1, so fA sends the unit
disc bijectively onto H. Note that fA is the Möbius transformation associated to

A :=

(
−i i
1 1

)
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Define Ri = A−1TiA. We calculate

R1 =
1

2

(
i 1
−i 1

)(
1 2
0 1

)(
−i i
1 1

)
=

1

2

(
i 1
−i 1

)(
−i+ 2 i+ 2

1 1

)
=

(
1 + i i
−i 1− i

)

R2 =
1

2

(
i 1
−i 1

)(
1 0
2 1

)(
−i i
1 1

)
=

1

2

(
i 1
−i 1

)(
−i i

−2i+ 1 2i+ 1

)
=

(
1− i i
−i 1 + i

)
Letting Si := R−1

i , we compute

S1 =

(
1− i −i
i 1 + i

)
and S2 =

(
1 + i −i
i 1− i

)
To deduce that T1 and T2 have no nontrivial relations it is enough to show that
fR1 and fR2 have no nontrivial relations, and this is equivalent to show that any
nonempty word in the letters fR1 , fS1 , fR2 , fS2 such that there no occurrences of
R1, S1 or of R2, S2 one after the other. Now comes the beautiful geometric fact.
Consider the following figures, where the black circle is {|z| = 1}, the points are
w1 = 1 + i, w2 = −1 + i, w3 = −1− i, w4 = −i+ 1 and all circles are of radius 1.

Recall that Möbius transformations preserve angles and send generalized circles to
generalized circles. Since fR1(−1) = −1 and fR1(−i) = i, the transformation fR1

sends the red circle to a circle that passes through −1 and i and is orthogonal to
the black circle. The only such circle is the orange one. Since fR1(0) = (i− 1)/2,
which is in the interior of the orange circle, we see that fR1 sends the exterior of
the red circle to the interior of the orange circle. Arguing similarly, one gets the
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following relations

fR1(Exterior of red) = Interior of orange fS1(Exterior of orange) = Interior of red

fR2(Exterior of blue) = Interior of green fS2(Exterior of green) = Interior of blue

Now we look at the action of a nonempty reduced word fx1 ◦ · · · ◦ fxn on the set
labeled as Domain in the diagram. This open set is the part of the circle {|z| < 1}
that is exterior to the other circles. We claim that

fx1 ◦ · · · ◦ fxn(Domain) ⊂


Interior of orange if x1 = R1

Interior of red if x1 = S1

Interior of green if x1 = R2

Interior of blue if x1 = S2

This is proved inductively, the case n = 1 being clear. For the induction step,
observe that

fx1◦· · ·◦fxn(Domain) ⊂ fx1(fx2◦· · ·◦fxn(Domain)) ⊂


fx1(Interior of orange) if x2 = R1

fx1(Interior of red) if x2 = S1

fx1(Interior of green) if x2 = R2

fx1(Interior of blue) if x2 = S2

Now the claim follows using that, since the word is reduced, x2 is not the inverse
of x1. For example, if x1 = R1, then x2 is not S1. Therefore, fx2 ◦· · ·◦fxn(Domain)
is exterior to the red circle, and since fx1 sends the exterior of the red circle to
the interior of the orange circle, we deduce the claim in this case. The other cases
are similar. The conclusion is that, since fx1 ◦ · · · ◦ fxn(Domain) 6= Domain, the
elements fR1 and fR2 have no nontrivial relations. Therefore, after conjugating we
deduce that fT1 and fT2 have no nontrivial relations. This not only shows that
T1, T2 have no nontrivial relations, but also that −I2 is not in the group generated
by T1, T2, and we have proved

Γ(2) ' F2 × {±I2} where F2 is free in the two generators T1, T2.

Remark 2.1.15. The circles in the diagram above are the isometric circles of the
respective transformations: the red circle is the isometric circle of R1, the orange
circle is the isometric circle of S1, the blue circle is the isometric circle of R2 and the
green circle is the isometric circle of S2. The area labelled as Domain is actually
a fundamental domain for the group generated by R1, R2, and is an example of a
Ford domain. More details can be found in the beautiful classical paper titled The
fundamental region for a Fuchsian group by L. R. Ford.

Exercise 1, Sheet 3: Compute the co-volume of the Hecke congruence subgroup
Γ0(4) ⊂ SL2(Z). In case the facts

(1) SL2(Z) has co-volume π
3

(2) [SL2(Z) : Γ0(N)] = N ·
∏

p|N

(
1 + 1

p

)
;
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are used, these should be proved (in the relevant cases).

Solution. Note that−I is in Γ0(4), so [SL2(Z) : Γ0(N)] = [PSL2(Z) : {±I2}\Γ0(N)].
Therefore, Vol(Γ0(4)\H) = [SL2(Z) : Γ0(4)]Vol(SL2(Z)\H). We calculate the in-
dex for general N . Consider the principal congruence subgroup, Γ(N) ⊂ Γ0(N),
consisting of matrices(

1 +Na Nb
Nc 1 +Nd

)
for a, b, c, d ∈ Z with determinant equal to 1

Look at the exact sequence

1 Γ(N) SL2(Z) SL2(Z/NZ) 1mod N

The only part where exactness is not clear is the surjectivity9. Consider A =(
a b
c d

)
with integer entries such that ad − bc = 1 + kN . We want to find a

matrix congruent to A mod N with determinant 1. Using the Smith normal

form we can write A = BDC where B,C ∈ SL2(Z) and D =

(
d1 0
0 d2

)
with

d1d2 = 1 + kN . We put X =

(
d1 +Nx Ny
Nz d2 +Nw

)
and try to find integers

x, y, z, w such that the matrix is in SL2(Z). This is equivalent, after simplifying,
to k + wd1 + xd2 + N(xw − yz) = 0. By Bézout we find integers x′, w′ such
that w′d1 + x′d2 = (d1, d2). Since (d1, d2) is a unit mod N , we find integers r, l
such that r(d1, d2) + k = Nl. Thus, letting x = rx′ and w = rw′ the equation
k+wd1 +xd2 +N(xw− yz) = 0 is equivalent to l+xw− yz = 0. We can now put

y = 1 and z = l+xw. Thus given D =

(
d1 0
0 d2

)
with d1d2 = 1+kN we have found

D′ congruent to D mod N and with determinant 1. Thus, A′ := BD′C is con-
gruent to A mod N and is in SL2(Z), proving the surjectivity in the exact sequence.

By the CRT, if N =
∏
pvp we have Z/NZ '

∏
p|N Z/pvpZ and thus SL2(Z/NZ) '∏

p|N SL2(Z/pvpZ). For the cardinality of SL2(Z/plZ) we consider

1 SL2(Z/plZ) GL2(Z/plZ) (Z/plZ)∗ 1det

where (Z/plZ)∗ is the group of units mod pl, of cardinality ϕ(pl) = (p − 1)pl−1.

Therefore, #SL2(Z/plZ) = #GL2(Z/plZ)
(p−1)pl−1 . To calculate the cardinality of GL2, con-

sider first l = 1. In this case Z/pZ is a field, and it is easy to see that # GL2(k) =

9See Shimura Introduction to the arithmetic theory of automorphic functions, Lemma 1.38,
for an argument that works for SLN
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(q2 − 1)(q2 − q), whenever k is a finite field with cardinality q. In particular,
# GL2(Z/pZ) = (p2 − 1)(p2 − p) For l > 1 consider the exact sequence

1 Γ̃(Z/plZ) GL2(Z/plZ) GL2(Z/pZ) 1
mod p

Here Γ̃(Z/plZ) consists of matrices of the form

(
1 + pa pb
pc 1 + pd

)
with entries in

Z/pl. Therefore, #Γ̃(Z/plZ) = p4(l−1), and

#GL2(Z/plZ) = #Γ̃(Z/plZ)#GL2(Z/pZ) = p4(l−1)(p2 − 1)(p2 − p)
and finally

#SL2(Z/plZ) =
#GL2(Z/plZ)

(p− 1)pl−1
= p3l−2(p2 − 1)

Recall that we are interested in the index of Γ0(N) in SL2(Z). Clearly, Γ0(N)
contains Γ(N), and the image of Γ0(N) under reduction mod N (as in 19) is the

group of upper triangular matrices with determinant one, of the form

(
a b
0 d

)
with

a, b, d ∈ Z/NZ and ad = 1 mod N . We can argue directly, by noting that b can
be any arbitrary residue modulo N , that a must be a unit mod N and that d is
determined by a, that the cardinality of this group is Nϕ(N) = N2

∏
p|N(1−p−1).

Thus, we arrive at

[Γ0(N) : SL2(Z)] =
# SL2(Z/NZ)

N2
∏

p|N(1− p−1)
=
N3
∏

p|N(1− p−2)

N2
∏

p|N(1− p−1)
= N

∏
p|N

(1 + p−1)

To calculate the covolume of SL2(Z) we just need to integrate the volume form
y−2dxdy over the fundamental domain D := {x+ iy | y > 1, y2 + x2 ≥ 1 ,−1/2 ≤
x ≤ 1/2}. We apply Fubini, integrating first over y to get

Vol(D) = 2

∫ 1
2

0

(∫ ∞
√

1−x2

y−2 dy

)
dx = 2

∫ 1
2

0

(1− x2)−
1
2 dy = 2

∫ π
6

0

dθ =
π

3

where we have performed the change of variables x = sin θ. Therefore, the covol-
ume of Γ0(N) is

π

3
N
∏
p|N

(1 + p−1)

In particular, the covolume of Γ0(4) is 2π. �

While it is quite easy to construct non-compact Fuchsian groups of the first
kind by just taking subgroups of SL2(Z) determined by congruence conditions it
is slightly harder to construct co-compact groups. A useful tool is the following
result:
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Theorem 2.1.16 (Nielsen). Suppose Γ ⊆ PSL2(R) is non-abelian and contains
only hyperbolic elements, then it acts properly discontinuous.

Proof. Suppose that Γ is not discrete. Then we find a sequence γk → 1 with γk 6= 1.
Let σ be a fixed (hyperbolic) element of Γ. After conjugating Γ (if necessary) we
can assume that σ fixes 0 and ∞ and thus is given by σ = diag(p, p−1) for some

p ∈ R. Given γ =

(
a b
c d

)
∈ Γ we compute the commutator

[σ, γ] = σγσ−1γ−1 =

(
1 + (1− q2)bc (q2 − 1)ab
(q−2 − 1)cd 1 + (1− q−2)bc

)
.

We see that

tr([σ, γ]) = 2− (q − q−1)2bc.

Similar we find that

tr([σ, [σ, γ]]) = 2 + (q − q−1)4abcd.

Of course we have

γk, [σ, γk], [σ, [σ, γk]]→ 1.

Note that since Γ does not contains only hyperbolic elements the (absolute values

of the) traces of the commutators are all > 2. If γk =

(
ak bk
ck dk

)
, we note that

bk, ck → 0 and ak, dk → 1 as k → ∞. Looking at the traces of the commutators
we find that bc ≤ 0 and bc ≥ 0. In other words bk = 0 or ck = 0. In particular, we
see that all γk share a fixed point with σ.

It can be easily seen that almost all γk must share the same fixed point with σ.
Indeed, otherwise we find infinitely many k, l with

γk =

(
ak bk
0 dk

)
and γl =

(
al 0
cl dl

)
.

Multiplying these two matrices we see that cl, dl 6= 0 gives a contradiction to
γkγl → 1 as k, l→∞.

Suppose that almost all γk have the fixed point ∞ (the case that they all have
the fixed point 0 is similar.) If we assume that 0 is not a fixed point then we have

γk =

(
ak bk
0 dk

)
and [σ, γk] =

(
1 (q2 − 1)akbk
0 1

)
.

Thus we have found a parabolic element in Γ, which is a contradiction.
So far we have

γk =

(
ak 0
0 a−1

k

)
up to finitely many exceptions.
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Since Γ is non-abelian and contains only hyperbolic elements there must be

τ ∈ Γ that thus not preserve {0,∞}. Write τ =

(
α β
γ δ

)
. Considering the

commutators [γk, τ ], which tend to 1 as k → ∞ one finds that ab = 0 = cd. This
is a contradiction.

�

Let p ≡ 1 mod 4 be prime and let n be not a quadratic residue modulo p. We
claim now that the group10

Γ(n, p) =

{(
a+ b

√
n (c+ d

√
n)
√
p

(c− d
√
n)
√
p a− b

√
n

)
: a, b, c, d ∈ Z, a2 − b2n− c2p+ d2np = 1

}
is Fuchsian of the first kind and co-compact. To see this one first checks that all
elements are hyperbolic. Then Nielsen’s theorem implies that Γ(n, p) is a Fuch-
sian group. After checking that Γ(n, p) has finite co-volume (i.e. a fundamental
domain has finite volume) we are done. Indeed it contains no parabolic elements
and hence must be co-compact.

Exercise 2, Sheet 8: For q ∈ N let Γ(q) = ker(SL2(Z)→ SL2(Z/qZ)).

a) Show that, for a prime p and an exponent t ∈ N the quotient Γ(p)/Γ(pt) is
a p-group.

b) Prove that the alternating group An, for n ≥ 7 is not isomorphic to any
composition factor in a composition series of SL2(Z/ptZ).

It is well known that, if q = pt11 p
t2
2 · · · ptss , then

SL2(Z/qZ) '
s∏
i=1

SL2(Z/ptii Z)

In particular, the above implies that no composition factor in a composition series
of SL2(Z/qZ) is isomorphic to An with n ≥ 7.

c) Conclude that, if there is a normal subgroup K ⊂ SL2(Z) such that
SL2(Z)/K ' An for some n ≥ 7, then K can not contain any of the
subgroups Γ(q) with q ∈ N. (Such a group K is usually called a non-
congruence subgroup).

Remark 2.1.17. The exercise is also true for n ≥ 6. However, it fails for n = 5,
since A5 ' PSL2(Z/5Z). The group A4 is not simple and A4 ' PSL2(Z/3Z), in
particular this last group is not simple. Finally, A3 is cyclic of order 3 and it is
a composition factor of SL2(Z/3Z) (since it is the quotient of A4 by the Klein
four-group) and of SL2(Z/2Z) ' S3.

10This group is constructed from an order in a quaternion algebra.
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Solution. For part a), observe that we need to count the number of matrices(
1 + px py
pz 1 + pw

)
with entries in Z/ptZ and determinant 1 modulo pt. In par-

ticular, the values of x, y, z, w only matter modulo pt−1. The condition det = 1
translates to

1 + px+ pw + p2xw − p2yz ≡ 1 mod pt if and only if

x+ w + pxw − pyz ≡ 0 mod pt−1 if and only if

x(1 + pw) ≡ pyz − w mod pt−1

Since (1 + pw) is a unit in Z/pt−1Z, we can choose y, z, w freely and solve for x
uniquely. Thus, [Γ(p) : Γ(pt)] = p3(t−1).

Moving to part b), we take as granted that PSL2(k) is simple for any field k
of cardinality greater than 3 and that the group An is simple for n ≥ 5. The
cardinality of An is n!/2, in particular it is composite for n > 3. Since Γ(p) is
normal in SL2(Z), a composition series for SL2(Z/ptZ) can be formed by pasting
composition series for Γ(p)/Γ(pt) and for SL2(Z/pZ). By part a), the composition
series of Γ(p)/Γ(pt) will consist of composition factors of prime cardinality (finite
p-groups are solvable). Also, for p ≥ 5, since we have the exact sequence

1 {±Id} SL2(Z/pZ) PSL2(Z/pZ) 1

and PSL2(Z/pZ) is simple, the composition factors of SL2(Z/ptZ) are, either of
cardinality p, of cardinality 2, or PSL2(Z/pZ). Comparing these cardinalities
with n!/2 = #An, the only possibility is PSL2(Z/pZ) ' An. We know that the
cardinality of PSL2(Z/pZ) is 1/2 · p(p− 1)(p+ 1). Therefore, if PSL2(Z/pZ) ' An
we must have

n! = p(p− 1)(p+ 1)

In particular, n! must be divisible by p, so necessarily n ≥ p, and then n! ≥ p!.
Setting n = p, cancelling factors, we must have (p + 1) ≥ (p − 2)!. This adds
the restriction p ≤ 5, and comparing 6! to p(p − 1)(p + 1), we see that the above
equality is impossible.

For part c), if such a K contained the principal congruence subgroup Γ(q) for
some q ∈ N, then An would be a composition factor of SL2(Z/qZ). Letting q =
pt11 p

t2
2 · · · ptss , since

SL2(Z/qZ) '
s∏
i=1

SL2(Z/ptii Z)

we see that any composition factor of SL2(Z/qZ) must be a composition factor of
SL2(Z/ptii Z) for some 1 ≤ i ≤ s. By part b) this is impossible. �
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2.2. Multiplier Systems. For z ∈ C we choose the argument to take values in
(−π, π] (i.e. arg(z) ∈ (−π, π]). With this choice we take the principle branch of
the logarithm to be

log(z) = log(|z|) + iarg(z).

Further we define
zs = exp(s log(z)).

We now define the quantity

jg(z) = cz + d, where g =

(
a b
c d

)
∈ SL2(R)

The co-cycle condition
jgh(z) = jg(hz)jh(z),

for g, h ∈ SL2(R), is easy to verify.

Remark 2.2.1. Let us consider the following motivating example. Recall that in
Remark 1.0.21 we have defined the Dedekind η-function. Further we used the
identity

e2(1, τ) = −4πi · d
dτ

log(η(τ))

and the transformation formula

e2(cτ + d, aτ + b) = e2(1, τ)− 2πi
c

cτ + d
,

which is a special case of (7), to deduce that

η(γτ) = εγjγ(τ)
1
2η(τ).

Here τ ∈ H and γ =

(
a b
c d

)
∈ SL2(Z).

We deduce that

εghjgh(τ)
1
2 = εgεhjg(hτ)

1
2 jh(τ), for g, h ∈ SL2(Z).

The map SL2(Z)→ C×, g 7→ εg is the prototypical example of a multiplier system
which we will define soon.

Before we continue we look at the following example, which should serve as a
warning. Take

g =

(
N + 1 N
−N 1−N

)
and h =

(
1 0
−N 1

)
.

Then we see that

jgh(z)
1
2 = [(N2 − 2N)z + 1−N︸ ︷︷ ︸

∈H

]
1
2 6= [

−N
−Nz + 1

+ 1−N︸ ︷︷ ︸
∈−H

]
1
2 [−Nz + 1︸ ︷︷ ︸

∈−H

]
1
2 = jg(hz)

1
2 jh(z)

1
2 .

(19)
Indeed, both sides differ by a factor of −1.
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We now define the number ω(g, h), for g, h ∈ SL2(R), by

2πω(g, h) = −arg(jgh(z)) + arg(jg(hz)) + arg(jh(z)).

It can be seen that ω(g, h) ∈ {−1, 0, 1} and it is independent of z ∈ H.

Lemma 2.2.2. For g, h, h′ ∈ SL2(R) and u =

(
1 ∗
0 1

)
we have

ω(gh, h′) + ω(g, h) = ω(g, hh′) + ω(h, h′),

ω(g, h) = ω(h, g) if gh = hg,

ω(ug, h) = ω(g, hu) = ω(g, h),

ω(gu, h) = ω(g, uh),

ω(g−1ug, h) + ω(g, g−1ugh) = ω(g, h),

ω(g, u) = ω(u, g) = 0 and

ω(gug−1, g) = ω(g, g−1ug) = 0.

Proof. Exercise. �

Furthermore, if g =

(
∗ ∗
0 d

)
with d < 0, then

ω(g, g−1) = 1.

Otherwise we have

ω(g, g−1) = 0.

Definition 2.2.1. For k ∈ R we define the factor system of weight k by setting

w(g, h) = e(kω(g, h)), with g, h ∈ SL2(R).

We note straight away that this only depends on k modulo 1. The purpose of
this definition is the identity

w(g, h)jgh(z)k = jg(hz)kjh(z)k. (20)

This fixes the mistake in (19). If we further define the slash operator |kg acting
on functions f : H→ C by

[f |kg](z) = jg(z)−kf(gz),

then we obtain the composition rule

f |kgh = w(g, h)[f |kg]|kh.

Now let Γ ⊆ SL2(R) be a discrete subgroup.11

11Its image in PSL2(R) will then be a Fuchsian group as discussed earlier in this Chapter.
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Definition 2.2.2. A multiplier system of weight k for Γ is a function ϑ : Γ→
S1 such that

ϑ(γ1γ2) = w(γ1, γ2)ϑ(γ1)ϑ(γ2).

If −1 ∈ Γ we additionally require that ϑ(−1) = e(−k
2
).12

Let us look at examples:

• The function ϑ(g) = εg given by the transformation behavior of the Dedekind
η-function is the prototype of a weight 1

2
multiplier system for SL2(Z).

• If k ∈ Z, then a multiplier of weight k for Γ is simply a character of Γ. A
particular explicit example can be constructed for Γ0(N) from a Dirichlet
character χ modulo N by setting

χ : Γ0(N)→ S1,

(
a b
c d

)
7→ χ(d).

If χ(−1) = (−1)k, then this defines a weight k multiplier system for Γ0(N),
which is also denoted by χ.

The following constructions allow us to create new multiplier systems from ex-
isting ones:

• If ϑ is a multiplier system of weight k for Γ and k′ ≡ k mod 2, then ϑ is a
multiplier system of weight k′ for Γ.
• If ϑ is a multiplier system of weight k for Γ, then ϑ is a multiplier system

of weight −k for Γ.
• If ϑ1 and ϑ2 are multiplier systems of weight k1 (resp. k2) for Γ, then ϑ1 ·ϑ2

is a multiplier system of weight k1 + k2 for Γ.
• If ϑ is a multiplier system of weight k for Γ and σ ∈ SL2(R), then

ϑσ(γ) = ϑ(σγσ−1)w(σγσ−1, σ)w(σ, γ) (21)

is a multiplier system of weight k for σ−1Γσ. One verifies that

ϑστ = (ϑσ)τ and ϑγ = ϑ,

for τ ∈ SL2(Z) and γ ∈ Γ.

Exercise 2, Sheet 3: Let Γ ⊂ SL2(R) be a discrete subgroup and let ϑ be a
multiplier system of weight k for Γ. Further let σ ∈ SL2(R). Show that

a) ϑσ(γ) = ϑ(σγσ−1)w(σγσ−1, σ)w(σ, γ) is a multiplier system of weight k for
σ−1Γσ;

b) ϑστ = (ϑσ)τ for σ, τ ∈ SL2(R); and
c) ϑγ = ϑ for γ ∈ Γ.

If formulae from Lemma 2.2.2 of the lecture notes are used, then proving them is
part of the exercise.

12It is clear that ϑ(−1) = ±e(−k2 ) must hold. We choose the positive sign for consistency
reasons. Indeed in connection with modular forms, which we will define soon, this is sensible
since −1 acts trivially on H.
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Solution. For part a) we need to proof that

ϑσ(σ−1γ1γ2σ) = w(σ−1γ1σ, σ
−1γ2σ)ϑσ(σ−1γ1σ)ϑσ(σ−1γ2σ)

for arbitrary γ1, γ2 ∈ Γ, where w(g, h) := e(kω(g, h)) is the factor system of weight
k. Using the definition of ϑσ and ϑ(γ1γ2) = w(γ1, γ2)ϑ(γ1)ϑ(γ2) (since ϑ is a
multiplier system of weight k), part a) is equivalent to

w(γ1, γ2)w(γ1γ2, σ)w(σ, σ−1γ1σ)w(σ, σ−1γ2σ)

= w(γ1, σ)w(γ2, σ)w(σ, σ−1γ1γ2σ)w(σ−1γ1σ, σ
−1γ2σ) (22)

Recall the first equation of Lemma 2.2.2, which we will prove below. It implies

w(gh, h′)w(g, h) = w(g, hh′)w(h, h′) (23)

for arbitrary g, h, h′ ∈ SL2(R). We use it three times. First, let g = σ, h = σ−1γ1σ
and h′ = σ−1γ2σ. We recognize w(g, hh′)w(h, h′) on the right hand side of (22).
Using (23) and canceling some terms, (22) is equivalent to

w(γ1, γ2)w(γ1γ2, σ)w(σ, σ−1γ2σ) = w(γ1, σ)w(γ2, σ)w(γ1σ, σ
−1γ2σ) (24)

Now let g = γ1, h = γ2 and h′ = σ. We recognize w(gh, h′)w(g, h) on the left hand
side of (24). Using (23) and cancelling some terms, (22) is equivalent to

w(γ1, γ2σ)w(σ, σ−1γ2σ) = w(γ1, σ)w(γ1σ, σ
−1γ2σ) (25)

This is equation (23) in the disguise g = γ1, h = σ and h′ = σ−1γ2σ. Thus, part
a) is proved.

For part b), unravelling the definitions (testing the equality on τ−1σ−1γστ) we
see that the statement is equivalent to showing

LHS := w(γ, στ)w(στ, (στ)−1γστ) = w(γ, σ)w(σ, σ−1γσ)w(σ−1γσ, τ)w(τ, (στ)−1γστ) =: RHS

Using (23) with g = σ, h = σ−1γσ, h′ = τ we see that

RHS = w(γ, σ)w(γσ, τ)w(σ, σ−1γστ)w(τ, (στ)−1γστ)

Using (23) again, this time with g = γ, h = σ, h′ = σ−1γστ we obtain

RHS = w(γ, γστ)w(γσ, τ)w(γσ, σ−1γστ)w(τ, (στ)−1γστ).

For the LHS, we use (23) with g = γ, h = στ and h′ = (στ)−1γστ obtaining

LHS = w(γ, γστ)w(γστ, (στ)−1γστ).

Comparing the last expressions for LHS and RHS, we can cancel w(γ, γστ) and
we easily recognize the remaining equality as an instance of (23) with g = γσ, h = τ
and h′ = (στ)−1γστ . This completes the proof of part b).
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Part c) is simpler. Indeed,

ϑγ0(γ) := ϑ(γ0γγ
−1
0 )w(γ0γγ

−1
0 , γ0)w(γ0, γ) = ϑ(γ0)−1θ(γ0γ)w(γ0, γ)

= ϑ(γ)

where we have used the definition of multiplier system twice.

To prove equality (23) from Lemma 2.2.2, recall that w(g, h) := e(kω(g, h)), and
that the definition of ω(g, h) is

2πω(g, h) := − arg(jgh(z)) + arg(jg(hz)) + arg(jh(z)) (26)

which does not depend on z ∈ H. Plugging in this definition in equality (23),
cancelling some terms and rearranging, we are left to check that

−arg(jgh(z))+arg(jg(hz))+arg(jh(z)) = − arg(jgh(h
′z))+arg(jg(hh

′z))+arg(jh(h
′z)).

But this holds since the definition of ω(g, h) does not depend on z ∈ H, and thus
both sides are equal to 2πω(g, h). �

2.3. General Modular Forms. Let Γ be a discrete subgroup of SL2(R), k ∈ R
and ϑ a multiplier system of weight k for Γ. From now on we will assume that Γ
(viewed as a subgroup of PSL2(R)) is of the first kind. In particular Γ is finitely
generated (or geometrically finite) and has finite co-volume.

Definition 2.3.1. A modular form for Γ of weight k with respect to the multiplier
system ϑ is a holomorphic function f : H→ C such that

• f |kγ = ϑ(γ)f for all γ ∈ Γ; and
• f is holomorphic at every cusp.

The space of all such functions will be denoted by Mk(Γ, ϑ).

The last condition requires some additional explanation. First, a cusp of Γ is a
fixed point of a parabolic element in Γ. Note that, if Γ is geometrically finite (i.e.
finitely generated), then there are only finitely many Γ-orbits of cusps. The letters
a, b, . . . are usually reserved for cusps. Given a cusp a ∈ R ∪ {∞} the stabilizer
group Γa ⊆ PLS2(R) is cyclic and infinite.13 Thus we write

Γa = 〈γa〉.

There is a so called scaling matrix σa ∈ SL2(R) such that

σ−1
a γaσa = T.

13We can lift Γa to a subgroup of Γ ⊆ SL2(R). However, if −1 ∈ Γ, then we have to add −γa.
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In particular σa∞ = a. We now compute

[f |kσa](Tz) = jσa(Tz)−kf(σaTz)

= jσa(Tz)−kf(γaσaz)

= jσa(Tz)−kjγa(σaz)kϑ(γa)f(σaz)

= jσa(Tz)−kjγa(σaz)kjσa(z)kϑ(γa)[f |kσa](z).

Now we observe that since jT (z) = 1 we can apply (20) twice to get

jσa(Tz)−kjγa(σaz)kjσa(z)k = jσa(Tz)−kjT (z)−kjγaσa(z)kw(γa, σa) =
w(γa, σa)

w(σa, T )
.

However, by the last two properties given in Lemma 2.2.2 we have

w(γa, σa) = w(σa, T ) = 1.

This shows that

[f |kσa](z + 1) = [f |kσa](Tz) = ϑ(γa)[f |kσa](z).

Writing ϑ(γa) = e(κa) for κa ∈ [0, 1) we find that the function

g(e(z)) = e(−κaz)[f |kσa](z) (27)

is one periodic. We say f is holomorphic at a if g(q) is holomorphic at 0.

Remark 2.3.1. What is happening here is that we equip the orbifold Γ\H (where Γ
is a Fuchsian group of the first kind) with appropriate charts at the cusps. Let us
elaborate on this. Let π : H→ Γ\H be the canonical projection. For z ∈ H we find
a disc Uz ⊆ H such that γUz ∩ Uz = ∅ for all γ ∈ Γ \ Γz and γUz = Uz for γ ∈ Γz.
Note that Γz is cyclic and of order m ≥ 1. Therefore we choose τz ∈ SL2(C) such
that τzUz = U , for U = {z : |z| < 1}. A chart is then given by (πUz), emτzπ

−1),
for em(z) = zm. Similarly one defines charts (πUa, e∞σ

−1
a π−1). Now e∞(z) = e(z),

σa is the scaling matrix and Ua is a sufficiently small disc tangent to R ∪ {∞} at
a. The role of U is played by HY = {x+ iy : y > Y } for sufficiently large Y .

Note that if g(q) is holomorphic at 0, then we can write down a Taylor expansion.
This translates into the Fourier expansion

[f |kσa](z) = e(κaz)
∞∑
n=0

af (n, a)e(nz)

of f at a. The numbers af (·, a) are the Fourier coefficients of f at a.

Definition 2.3.2. A cusp a of Γ is said to be singular for ϑ if ϑ(γa) = 1. Further
f ∈ Mk(Γ, ϑ) is called a cusp form if af (0, a) = 0 for all singular cusps of Γ. The
space of all cusp forms for Γ of weight k with respect to the multiplier system ϑ is
denoted by Sk(Γ, ϑ).

Let us give some examples that we already encountered:
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(1) The Dedekind η function is a modular form of weight 1
2

for SL2(Z) with
respect to ϑeta. It is a cusp form because there are no singular cusps. Indeed
(up to equivalence) the only cusp of SL2(Z) is a =∞, but ϑeta(T ) = e( 1

24
).14

(2) Let k ≥ 4 be even. Recall the numbers ek(u, v) appearing as the constant
term in the Taylor expansion of the elliptic functions

Ek(x) = x−k + ek + . . . .

We claim that Ek(z) = 1
2ζ(k)

ek(1, z) is a modular form of weight k for SL2(Z)

with respect to the trivial multiplier system. To see this we compute

[Ek|kγ](z) = jγ(z)−kEk(γz) = (cz + d)−k
ek(1, γz)

2ζ(k)

=
ek(cz + d, az + b)

2ζ(k)
=
ek(1, γz)

2ζ(k)

=
ek(1, z)

2ζ(k)
= Ek(z)

for γ =

(
a b
c d

)
. The Fourier expansion is already computed in Lemma 1.0.9

and upon noticing that 2ζ(k) = (2π)k

k!
Bk we obtain

Ek(z) = 1 + ik
2k

Bk

∞∑
n=1

σk−1(n)e(nz).

In particular these are not cusp forms.
(3) Note that

E2(z) =
e2(1, z)

2ζ(2)
= 1− 24

∞∑
n=1

σ1(n)e(nz) (28)

is not a modular form of weight 2 for SL2(Z) with trivial multiplier system.
Indeed, according to (7) we have

[E2|2γ](z) =
e2(cz + d, az + d)

2ζ(2)
= E2(z) +

12

2πi
· c

cz + d
.

But, we can compute that f(z) = E2(z)−NE2(Nz) is a modular form of
weight 2 for Γ0(N) with trivial multiplier system. We first note that

N · az + b

cz + d
=
aNz +Nb
c
N
Nz + d

.

14For now this will be the only exciting multiplier system we will encounter.
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Thus applying the transformation behavior of E2 observed above we find
that

[f |kγ](z) = f(z) +
12

2πi
· [ c

cz + d
−N ·

c
N

c
N
Nz + d

] = f(z).

This is again no cusp form.
(4) To find a cusp form of integral weight we observe in the new normaliza-

tion the Eisenstein series Ek (for k ≥ 4) have constant term equal to 1.
Thus if we can take the difference between two of these we get a function
without constant term at ∞. However, for this function to have the right
transformation behavior we have to take care of the weight:

∆(z) =
E3(z)3 − E6(z)2

1728
= e(z) + . . . .

This is a cusp form for SL2(Z) of weight 12 and trivial multiplier system.
Actually we have already seen a version of this function in (17) above.
Indeed we get

(2π)12 ·∆(z) = 243352(20e4(1, z)3 − 49e6(1, z)2) = ∆̃.

Furthermore we get equality

∆(z) = η(z)24.

The latter implies that ϑ24
eta is trivial and that we can write

∆(z) = e(z)
∞∏
n=1

(1− e(nz))24 =
∞∑
n=1

τ(n)e(nz).

The coefficients τ(n) form a very special arithmetic function called the Ra-
manujan function. Of course we have τ(1) = 1, but it has many more very
interesting properties. Ramanujan conjectured that τ(n) is multiplicative

and satisfies the bound τ(p) ≤ 2 · p 11
2 for primes p. Both conjectures are

now known, but are very deep.
(5) Non-example: The function

j(z) =
E4(z)3

∆(z)
.

This function transforms like a modular form of weight 0 with respect to
SL2(Z) (and trivial multiplier system), but has a simple pole at∞. Thus it
is not holomorphic at the cusps! (It anyway plays a major role in number
theory.)

Exercise 3, Sheet 3: Recall that the η-multiplier ϑeta of weight 1
2

for SL2(Z) is
given by the functional equation

η(γz) = ϑeta(γ)jγ(z)
1
2η(z) (29)
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a) Show that

ϑeta(−γ) = e

(
1

4

)
ϑeta(γ) for γ =

(
a b
c d

)
∈ SL2(Z) with c > 0,

ϑeta(Tm) = e
(m

24

)
and

ϑeta(S) = i−
1
2

Since T and S generate SL2(Z) this is in principle sufficient to understand the full
η-multiplier. But the analysis is a bit tedious. The final result is

ϑeta(γ) = e

(
a+ d− 3c

24c
− 1

2
s(d, c)

)
, for γ =

(
a b
c d

)
with c > 0. (30)

Here s(d, c) is the Dedekind sum given by

s(d, c) =
∑

0≤n<c

n

c
·
(
dn

c
− bdn

c
c − 1

2

)
(31)

This sum satisfies the reciprocity law

s(d, c) + s(c, d) =
1

12

(
d

c
+
c

d
+

1

cd
− 3

)
, for coprime c, d > 0. (32)

b) Derive the reciprocity formula (32) modulo 2 from (29) and (30).

Solution. Recall the definition

η(τ) = q
1
24P (q) = e

( τ
24

)
P (q) where q = e(τ) and τ ∈ H.

Since e(τ +m) = e(τ) we get η(Tmτ) = e
(
m
24

)
η(τ), and comparing with (29) and

using jTm(z) = 1 we get

ϑeta(Tm) = e
(m

24

)
Note also that, since −γz = γz, from (29) we have

ϑeta(−γ) =
jγ(z)

1
2

j−γ(z)
1
2

ϑeta(γ)

Recall jγ(z) = cz + d ∈ H since c > 0, and that the branch of the logarithm has

arg ∈ (−π, π]. Writing φ := arg(cz+d) ∈ (0, π) we have jγ(z)
1
2 = |cz+d| 12 eiφ2 . On

the other hand, arg(−cz − d) = arg(cz + d) − π ∈ (−π, 0) = φ − π and therefore

j−γ(z)
1
2 = |cz + d| 12 eiφ2−iπ2 . Thus

ϑeta(−γ) =
jγ(z)

1
2

j−γ(z)
1
2

θeta(γ) = ei
π
2 ϑeta(γ) = e(

1

4
)ϑeta(γ)
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Recall that S =

(
0 −1
1 0

)
, with i as fixed point, Si = i. Thus, plugging γ = S

and z = i in (29) we see

ϑeta(S) = jS(i)−
1
2 = i−

1
2 = e(

−1

8
)

with the branch of the logarithm as above (we have used jS(z) = z). This finishes
the proof of part a).

For part b), let c, d > 0 coprime and choose a, b so that ad − bc = 1 (this is

possible since (c, d) = 1). Write γ =

(
a b
c d

)
. Applying the definition of multiplier

system of weight 1/2 to γ and S gives

ϑeta(γS) = e

(
− arg jγS(z) + arg jγ(Sz) + arg jS(z)

4π

)
ϑeta(γ)ϑeta(S)

for any z ∈ H. Put z = i, so that Sz = z = i and observe that arg jS(i) =

arg(i) = π
2
. We calculate γS =

(
b −a
d −c

)
and therefore jγS(i) = di − c while

jγ(i) = ci+d. Since di− c = i(ci+d) and c, d > 0 we get (with our branch of arg)
that arg (di− c) = π

2
+ arg (ci+ d). Therefore we arrive at

ϑeta(γS) = ϑeta(γ)ϑeta(S) = ϑeta(γ)e

(
−1

8

)
From formula (30) after rearranging we see

1

2
(s(d, c)− s(−c, d)) =

1

24

(
a+ d

c
+
c− b
d
− 3

)
=

1

24

(
d

c
+
c

d
+

1

cd
− 3

)
modulo 1, where we have used ad − bc = 1. Using s(−c, d) = −s(c, d) (apparent
from the oddness of the sawtooth function in the definition (31)) and multiplying
by 2 we get (32) modulo 2. �

The next result gives an alternative description of the regularity condition of
modular forms at the cusps.

Lemma 2.3.2. Suppose f : H→ C is holomorphic and satisfies f |kγ = ϑ(γ)f for
all γ ∈ Γ.

(1) f ∈ Mk(Γ, ϑ) if and only if f is of moderate growth (i.e. |y k2 f(x + iy)| ≤
C(yA + y−A) for constants C,A > 0.)

(2) f ∈ Sk(Γ, ϑ) if and only if Im(·) k2 f(·) is bounded.

Proof. We will only proof the first part and leave the second part as an exercise
(see below). If Γ is co-compact, then there is nothing to show. Thus, suppose that
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a is a cusp of Γ. Since f is holomorphic in H we have the expansion

[f |kσa](z) =
∞∑

n=−∞

af (n; a)e((n+ κa)z).

This is noting but the Laurent expansion of g as defined in (27). The coefficients
can be computed by

af (n; a) =

∫ z0+1

z0

[f |kσa](z)e(−(n+ κa)z)dz,

for z0 ∈ H with sufficiently large imaginary part. Note that this is independent of
z0 and of the path of integration.

Assume that f has moderate growth. We first consider the case when a =∞. In
this case we can choose the scaling matrix to be σ∞ = diag(h, h−1) for some positive
real number h. Using the moderate growth condition we obtain the estimate

|af (n;∞)| ≤ hk
∫ 1

0

|f(h2(y+ix))| exp(2π(n+κa)y)dx ≤ C(f,Γ)yA exp(2π(n+κa)y).

The crucial observation is that, for n < 0 the right hand side goes to 0 as y →∞.
This implies that af (n;∞) = 0 for n < 0. Second we consider another cusp a 6=∞.
Observe that

Im(σaz) =
Im(z)

|cz + d|2
=

y

c2y2 + (cx+ d)2
≥ C1(c, d)

1

y + y−1
≥ C1(c, d)y−1,

for z = x+ iy with x ∈ [0, 1], y > 1 and σa =

(
a b
c d

)
with c 6= 0. Combining this

with the moderate growth property we end up with

|[f |kσa](z)| ≤ C2(f) Im(σa)
−A Im(z)−

k
2 ≤ C3(f, a)yA−

k
2 .

With this estimate at hand we can proceed as in the case of the cusp ∞.
For the opposite direction we assume that f ∈Mk(Γ, ϑ). Note that f is bounded

in any compact subset of H. Furthermore, [f |kσa](z)→ af (0; a) for z →∞. Thus
f |kσa is bounded in a neighbourhood of ∞. By definition of the slash operator
this implies that f is polynomial bounded in a neighbourhood of a. �

Exercise 1, Sheet 4: Let f : H → C be holomorphic and assume that f |kγ =
ϑ(γ)f for all γ ∈ Γ. Show that f ∈ Sk(Γ, ϑ) if and only if Im(·)k/2f(·) is bounded.

Solution: Note that Im(·)k/2|f(·)| is invariant under Γ. Indeed, by the modularity
of f

Im(γz)k/2f(γz) = Im(z)k/2|cz + d|−kϑ(γ)jγ(z)kf(z).

Since |jγ(z)| = |cz + d|, taking absolute values we find

|Im(γz)k/2f(γz)| = |Im(z)k/2f(z)|.
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Therefore, g(·) := Im(·)k/2f(·) is bounded on H if and only if it is bounded on
a fundamental domain. The groups Γ ⊂ PSL2(R) that we are working with are
discrete, finitely generated and with finite covolume. This implies that for a fun-
damental domain we can take a geodesic polygon with finitely many sides, such
that all the vertexes (if any) that are in R∪{∞} correspond to inequivalent cusps
of Γ. Let the finitely many inequivalent cusps be denoted by a1, a2, . . . , aκ, and
denote by Γai the stabilizer of ai in Γ. This is an infinite cyclic group, and recall
that a scaling matrix σai ∈ PSL2(R) satisfies

σai(∞) = ai and σ−1
ai

Γaiσai = 〈T 〉 where Tz = z + 1.

In particular T = σ−1
ai
γaiσai for a generator γai of Γai .

We now solve the exercise. If Γ\H, then there are no cusps, so the hypothesis
of the exercise imply that f ∈ Sk(Γ, θ) by definition, and g(·) is always bounded
since it is Γ invariant and Γ has a fundamental domain F which is compact. From
now on we assume that there are cusps for Γ. The structure of the argument will
be the following

f ≡ 0

f ∈ Sk(Γ, θ) Im(·)k/2f(·) is bounded f ≡ c ∈ C

f ∈ Sk(Γ, θ)

k<0, or k=0,θ 6=θtr

k=0,θ=θtr

k>0

We will proof, in particular, that Sk(Γ, ϑ) = 0 for k < 0 or k = 0 and ϑ 6= ϑtr, and
also that S0(Γ, ϑtr) = C.

Let f ∈ Sk(Γ, ϑ). The goal is to show that g(·) := Imk/2f(·) is bounded on
H. Since g is Γ invariant, it is equivalent to show that g is bounded on a nice
fundamental domain F as above. For a parameter L > 0 write C(L) := {x+ iy ∈
H | 0 ≤ x ≤ 1, y > L}. The important property about a nice fundamental domain
as described above is that, for large L > 0 we can express F as a disjoint union

F =

( ⊔
cusps ai

σai(C(L))

)
t
⊔
Fcomp(L)

where Fcomp(L) is compact in H. We say that σai(C(L)) is a cuspidal zone around
ai = σai(∞). By compactness, g is automatically bounded on Fcomp(L). For the
cuspidal zones, we need to show that g(σai(z)) is bounded for 0 ≤ x ≤ 1 and
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y > L. We have

g(σaiz) = Im(σaiz)k/2f(σaiz) = Im(σaiz)k/2jσai (z)k[f |kσai ](z)

= Im(σaiz)k/2jσai (z)ke(κaiz)
∞∑
n=0

af (n, ai)e(nz)

= Im(σaiz)k/2jσai (z)ke(κaiz)hf (q; ai)

where hf (·; ai) is holomorphic in the disc {|q| < 1} and, κai ∈ [0, 1), and if κai = 0,
then h(q; ai) has a zero at q = 0, so we can write hf (q; ai) = qkf (q; ai) in this case,
for kf (q; ai) holomorphic in {|q| < 1}. Anyway, taking absolute values we get

|g(σaiz)| =

{
Im(z)k/2|q||kf (q; ai)|, if κai = 0;

Im(z)k/2|q|κai |hf (q; ai)|, if 0 < κai < 1
(33)

For z = x + iy such that y > L, q remains in the closed disc {|q| ≤ exp(−2πL)},
which is compact inside {|q| < 1}. Therefore, in each of the cases kf (q; ai) or
hf (q; ai) is bounded. Since On the other hand, for any r > 0 the expression
Im(z)k/2|q|r = yk/2 exp(−2πry) is bounded for y > L and, in fact, tends to 0 with
exponential decay when y →∞. This proves that g is bounded on F as desired.

Now suppose that g is bounded. By Lemma 2.3.2 we already know that f ∈
Mk(Γ, θ). By the same calculation as above

g(σaiz) = Im(σaiz)k/2jσai (z)k[f |kσai ](z) = Im(σaiz)k/2jσai (z)ke(κaiz)hf (q; ai)

where hf is holomorphic on {|q| < 1}. Suppose that k < 0. If f 6≡, then also
hf ≡ 0. If |hf (q0)| = C > 0 for some q0 with |q| < 1, then by the maximum
modulus theorem we know that, for any r < 1 such that r > |q0|, there is qr with
|qr| = r such that |hf (qr)| ≥ C. For any qr we can find unique 0 ≤ x < 1 and
0 < y <∞ such that q := e(z) = qr. Therefore, for this z we have

|g(σaiz)| ≥ yk/2e(−2πκaiy)C

Letting r → 1, we find a sequence of points zi with yi → 0 such that the above
inequality holds. When k < 0 the right hand side tends to +∞, which contradicts
the fact that g is bounded.

In the case k = 0, we obtain

|f(σaiz)| = |g(σaiz)| = e(−2πkaiy)|hf (q; ai)|

By the maximum modulus principle, we have

sup
|q|<r
|hf (q; ai)| ≤ max

|q|=r
|hf (q; ai)|
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Since e(−2πkaiy) is decreasing as a function of y we deduce that

sup
z∈σai (C(L))

|f(z)| = max
z∈σai (H(L))

|f(z)| ≤ max
z∈Fcomp(L)

|f(z)

where H(L) := {z = x + iy | 0 ≤ x ≤ 1, y = L}, and the inequality follows from
H(L) ⊂ Fcomp(L). Therefore, f is a bounded holomorphic function on H that
attains its maximum, and must be a constant by the strong maximum modulus
principle. If ϑ(γ) 6= 1 for some γ ∈ Γ, then

f(z) = [f |0γ](z) = ϑ(γ)f(z), for all z ∈ H→ f ≡ 0. (34)

Finally, we assume k > 0. As before, we already know that f ∈ Mk(Γ, ϑ). We
only need to look at singular cusps, so that κai = 0. We have

g(σaiz) = Im(σaiz)k/2jσai (z)khf (q; ai)

where hf (q; ai) =
∑∞

n=0 af (n, ai)e(nz) and the objective is to show that hf (0; ai) =
0. Taking absolute values

|g(σaiz)| = Im(z)k/2|hf (q; ai)| (35)

By hypothesis, the left hand side is bounded. When y → ∞ we have q → 0 and
therefore |hf (q; ai)| → |hf (0; ai)|. Since k > 0, it must be that hf (0; ai) = 0, since
otherwise g would be unbounded as y →∞. Since this is true for all singular cusps
and we know that f ∈Mk(Γ, ϑ), we deduce that f ∈ Sk(Γ, ϑ), as desired. �

The previous lemma allows us in particular to define the so called Petersson
inner product:

〈f, g〉 =

∫
Γ\H

f(z)g(z) Im(z)kdµ(z),

for f, g ∈ Sk(Γ, ϑ).

Remark 2.3.3. First note that the integral is defined by∫
Γ\H

h(z)dµ(z) =

∫
F
h(x+ iy)

dxdy

y2
.

Where F is some fundamental domain for Γ. To make this well defined h should
be Γ-invariant. It is easy to verify that the integrand in the definition of the inner
product is indeed Γ-invariant. Furthermore one directly sees that the integral is

finite. This is because (under current assumptions) µ(F) < ∞ and Im(·) k2 f as

well as Im(·) k2 g are bounded.

Lemma 2.3.4. The space Sk(Γ, ϑ) equipped with 〈·, ·〉 is a finite dimensional
Hilbert space.

Proof. It is clear that 〈·, ·〉 defines an inner product. Once we see that Sk(Γ, ϑ) is
a finite dimensional complex vector space completeness is also clear.
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We will show that Mk(Γ, ϑ) is finite dimensional by reduction to a weak ver-
sion of the Riemann-Roch theorem, which we now recall. Let X be a compact
Riemann surface, P1, . . . , Pn ∈ X and let r1, . . . , rn be positive integers. Then we
consider the (complex) vector space V of meromorphic functions on X, which are
holomorphic except for possible poles of order at most ri at the points Pi (with
i = 1, . . . ,m). Then the dimension of V is at most r1 + . . .+ rm + 1.

To apply this result be put X = Γ\(H ∪ {cusps of Γ}). This is a compact
Riemann surface. Now take 0 6= f0 ∈ Mk(Γ, ϑ), if non such function exists we are
done anyway. Recall that f0 is holomorphic on X. Let P1, . . . , Pm be the zeros of
f0 and let ri be the order of vanishing of f0 at Pi for i = 1, . . . ,m. (At elliptic
points Pi the order of vanishing must be slightly modified but this is not essential.)
We define the map

Mk(Γ, ϑ) 3 f 7→ f

f0

∈ V,

where V is defined as above. This is an isomorphism, so that we obtain the bound

dimMk(Γ, ϑ) ≤ r1 + . . .+ rm + 1 <∞.
�

2.4. Modular forms of integral even weight, trivial multiplier for SL2(Z).
We will take a look of the very classical when k ∈ 2N, ϑ = ϑtr and Γ = SL2(Z).

Theorem 2.4.1. Let f ∈Mk(SL2(Z), ϑtr) be non-zero and let mf (z) ∈ N∪{0} be
the order of vanishing of f at z ∈ H ∪ { cusps of Γ}. Further set

m(z) =

{
|Γz| if z ∈ H is an elliptic fixed point of PSL2(Z),

1 else.

Then we have ∑
Γ\(H∪{cusps of Γ})

mf (z)

m(z)
=

k

12
.

Proof. For R > 0 sufficiently large let

FR = {x+ iy : − 1

2
≤ x ≤ 1

2
, |x+ iy| ≥ 1 and y ≤ R}

be the truncated standard fundamental domain and let γ be the path around the
boundary of FR. We modify this part slightly by forming little circles of radius r

around the elliptic fixed points i, ρ± = ±1
2

+ i
√

3
2

.
We first observe that by a theorem of Cauchy we have

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
z∈Int(γ)

mf (z).

Furthermore, for all z ∈ Int(γ) we have m(z) = 1.
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The top piece of the integral is given by

1

2πi

∫ 1
2

1
2

f ′(−x+ iR)

f(−x+ iR)
dx→ −mf (∞) as R→∞.

Since the left and the right hand side of FT are equivalent via T they cancel
each other.

To compute the contribution of the arcs around the elliptic fixed points z0 = i, ρ±
we write

f ′(z)

f(z)
=
mf (z0)

z − z0

+ h(z)

for a holomorphic function h. As r → 0 the contribution then approaches

1

2πi

∫
az0 (γ)

mf (z0)

z − z0

= −µ(z0)mf (z0),

where az0(γ) is the piece of the arc and 2πµ(z0) is the arc length. Note that

µ(i) =
1

2
and µ(ρ±) =

1

6
.

Finally we have to compute the contribution of bottom of the curve γ with
i, ρ± removed. We can write this as A ∪ SA, where A is the arc of the unit circle
connecting ρ− and i. One checks that

f ′(Sz)

f(Sz)
z−2 =

k

z
+
f ′(z)

f(z)
.

This gives us

1

2πi

∫
A∪SA

f ′(z)

f(z)
dz =

1

2πi

∫
A

f ′(z)

f(z)
dz − 1

2πi

∫
A

f ′(Sz)

f(Sz)
dSz

= − 1

2πi

∫
A

k

z
dz =

k

12
.

Combining everything gives the desired formula and completes the proof. �

Note that

Mk(SL2(Z), ϑtr) ·Ml(SL2(Z), ϑtr) ⊆Mk+l(SL2(Z), ϑtr).

This motivates us to define the (graded) ring

M(SL2(Z), ϑtr) =
⊕
k≥0

Mk(SL2(Z), ϑtr).

Using Theorem 2.4.1 we can understand this ring completely. But we first make
the following observations:

• If k = 0 we have Mk(SL2(Z), ϑtr) = C. This is because by Theorem 2.4.1
we have

∑
zmf (z)m(z)−1 = 0 for f 6= 0, which implies mf (z) = 0 for all

z. But this can only happen if f is constant.
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• If k = 2 or odd, then Mk(SL2(Z), ϑtr) = {0}. The argument for k = 2 is
similar to the case k = 0. If k is odd we observe that −f(z) = [f |k−1](z) =
f(z), which is a contradiction.15

• If k = 4, then we have Mk(SL2(Z), ϑtr) = C · E4. From Theorem 2.4.1 it
follows that E4(ρ±) = 0 with mE4(ρ±) = 1. At all other points E4 does
not vanish. Suppose now that f ∈ M4(SL2(Z), ϑtr). Then there is c ∈ C
so that g = f − cE4 satisfies mg(∞) ≥ 1. Applying Theorem 2.4.1 to g we
find that g must be zero. In particular f = cE4.
• Similarly one can show that M6(SL2(Z), ϑtr) = C · E6, M8(SL2(Z), ϑtr) =
C · E2

4 and M10(SL2(Z), ϑtr) = C · E4E6.
• We have

M12(SL2(Z), ϑtr) = C · E12 ⊕ C ·∆.
Note that m∆(∞) = 1, so that by Theorem 2.4.1 we see that ∆ is non-zero
on H. Take f ∈M12(SL2(Z), ϑtr) and define

g(z) =
f(z)− cE12(z)

∆(z)
.

We can choose c so that g ∈M0(SL2(Z), ϑtr). This shows that g is constant
and proves our claim.
• Inductively one obtains that

Mk(SL2(Z), ϑtr) = ∆ ·Mk−12(SL2(Z), ϑtr)⊕ C · Ek. (36)

In particular we have

dimMk(SL2(Z), ϑtr) =

{
b k

12
c if k ≡ 2 mod 12,

b k
12
c+ 1 if k 6≡ 2 mod 12.

Theorem 2.4.2. The Eisenstein series E4 and E6 algebraically independent over
C and they generate M(SL2(Z), ϑtr) as a polynomial ring:

M(SL2(Z), ϑtr) = C[E4, E6].

Proof. That M(SL2(Z), ϑtr) is generated by E4 and E6 follows directly from (36).
To see that they are algebraically independent we suppose that

P (E4, E6) = 0 for P ∈ C[X, Y ] \ {0}
for P with minimal degree. Note that we can assume that (after inserting the
Eisenstein series) the monomials have equal weight. Now we have two cases:

• P (E4, E6) = Em
4 +E6 ·Q(E4, E6). But evaluating at i gives a contradiction

since E4(i) 6= 0 = E6(i).
• P (E4, E6) = Em

6 +E4·Q(E4, E6). But evaluating at ρ± gives a contradiction
since E4(ρ±) = 0 6= E6(ρ±).

15Note that actually ϑtr is not a multiplier system for odd k because it does not satisfy the
consistency condition.
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�

Exercise 2, Sheet 4:

a) Show that

M6(SL2(Z), ϑtr) = C · E6 and M8(SL2(Z), ϑtr) = C · E2
4 .

b) Deduce that for n ∈ N one has the identity

σ7(n) = σ3(n) + 120
∑

0<m<n

σ3(m)σ3(n−m)

between divisor functions. (It can be used that 4i4

B4
= 240 and 8i8

B8
= 480.)

Solution. Recall that if f ∈Mk(SL2(Z), ϑtr) is non-zero then the following formula
holds (for Γ = SL2(Z), see Theorem 2.4.1)∑

Γ\(H∪{cusps of Γ})

mf (z)

m(z)
=

k

12

where mf (z) is the order of the zero of f at z, and m(z) = 1 for all points except

for m(i) = 2 and m(ρ) = 3, where ρ = 1+i
√

3
2

(note that ρ and −ρ−1 = −1+i
√

3
2

are
identified by S ∈ Γ). Recall that E6 is not zero and is in M6(SL2(Z), θtr). Testing

(E6|6S)(z) = E6(z) for S =

(
0 −1
1 0

)
and z = i, since Si = i we obtain

E6(i) = [E6|6S](i) = jS(i)−6E6(i) = i−6E6(i)

and thus E6(i) = 0. Similarly, testing (E4|4γ)(z) = E4(z) for z = ρ and γ =(
1 −1
1 0

)
we obtain, since γρ = ρ,

E4(ρ) = [E4|4γ](ρ) = jγ(ρ)−4E4(ρ) = ρ−4E4(ρ).

But ρ is a primitive 6-th root of unity, and thus E4(ρ). Therefore E4(·)2 has a zero
of order at least 2 at ρ. By the valence formula the only possibility is that:

(1) E6 has exactly one zero in the fundamental domain, it is located at i, and
it is of order 1.

(2) E2
4 has exactly one zero in the fundamental domain, it is located at ρ and

it is of order 2 (if one wants to consider ρ and −ρ−1 as two distinct points
in the fundamental domain, then one puts m(ρ) = m(−ρ−1) = 1/6).

If we are given f ∈ M6 we can consider w ∈ H not elliptic where E6 does not
vanish, and form g := f − cE6 for some c ∈ C so that g(w) = 0. Then, looking at
the valence formula we have

1 +
∑

(Γ\(H∪{cusps of Γ}))−{z}

mg(z)

m(z)
= 1/2,
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which is a contradiction unless g is identically zero. The same argument works for
k = 8 and E2

4 . This finishes the proof of part a).

For part b), note that since E8 ∈ M8(SL2(Z), ϑtr) we have E8 = cE2
4 for some

c ∈ C. Using the expansion

Ek(z) = 1 + kikB−1
k

∞∑
n=1

σk−1(n)e(nz)

we deduce c = 1, and then comparing coefficients we get

8

B8

σ7(n) = 2
4

B4

σ3(n) +
16

B2
4

∑
0<m<n

σ3(m)σ3(n−m).

Using 4
B4

= 240 and 8
B8

= 2 · 240 we arrive at the desired identity. �

Exercise 3, Sheet 4: Let

f(z) =
∞∑
n=0

af (n;∞)e(nz) ∈Mk(SL2(Z), ϑtr).

a) Let K be an algebraic number field (i.e. a finite extension of Q) and
suppose that

max{n ∈ Z≥0 : af (m,∞) ∈ K for all 0 ≤ m ≤ n} ≥ dimMk(SL2(Z), ϑtr)− 1.

Prove that all coefficients already lie in K (i.e. af (n,∞) ∈ K for all
n ∈ Z≥0).

b) Show that if the Fourier coefficients af (n,∞) of f (at ∞) are algebraic
numbers, then they are all contained in a finite extension of Q.

Solution. Recall that a basis of Mk(SL2(Z), ϑtr) can be chosen of the form gi :=
Ek−12i∆

i for 0 ≤ i ≤ dimMk(SL2(Z), ϑtr)−1. The point here is that the coefficients
agi(0,∞), . . . , agi(i − 1,∞) of gi are 0 while the coefficient agi(i,∞) = 1 is non-
zero, and all the agi(j,∞) for j ≥ 0 are rational. We look for the (unique) linear
combination such that f =

∑
cigi. Equating the first dimMk coefficients we arrive

at a system ag0(0,∞) · · · agdimMk−1
(0,∞)

...
...

ag0(dimMk − 1,∞) · · · agdimMk−1
(dimMk − 1,∞)


 c0

...
cdimMk−1

 =

 af (0,∞)
...

af (dimMk − 1,∞)


(37)

Recalling that agi(j,∞) = 0 for j < i, and agi(i,∞) = 1, we see that the matrix
lower triangular with non vanishing diagonal, and therefore invertible. Since it has
rational entries, its inverse also has rational entries, and since by hypothesis the
column vector af has entries in K we deduce that the numbers ci are in K. Since
f =

∑
cigi and the coefficients of the gi are all rational we deduce that f has all
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coefficients in K. This finishes the proof of part a).

For part b), let K be the field generated by af (n,∞) for n ≤ dimMk − 1. By
hypothesis we know that the af (n,∞) are algebraic, and since K is generated by
a finite number of them, then K is a finite extension of Q. Applying part a) we
deduce that all coefficients lie in K, a finite extension of Q. �

Remark 2.4.3. The exercise above can also be solved by applying Theorem 2.4.1.
The idea is the same as above, but this time {gi : 0 ≤ i ≤ dimMk(SL2(Z), θtr)−1}
is an arbitrary basis of Mk(SL2(Z), ϑtr) such that all the coefficients agi(j,∞) for
j ≥ 0 are rational16. As before, the key step is to show that ag0(0,∞) · · · agdimMk−1

(0,∞)
...

...
ag0(dimMk − 1,∞) · · · agdimMk−1

(dimMk − 1,∞)


is invertible. This is equivalent to showing that the matrix has 0 kernel, which
by the system (37) is equivalent to the assertion: if f ∈ Mk(SL2(Z), ϑtr) and the
coefficients af (j,∞) = 0 for 0 ≤ j ≤ dimMk−1), then f is identically zero. Recall
the formula

dimMk(SL2(Z), ϑtr) =


0, if k odd or k ≤ 0;

b k
12
c, if k ≥ 2, and k ≡ 2 mod 12;

b k
12
c+ 1, if k ≥ 2, and k ≡ 0, 4, 6, 8 or 10 mod 12.

Now let k ≥ 4 even (otherwise the exercise is vacuous) and suppose that f ∈
Mk(SL2(Z), ϑtr) satisfies af (j,∞) = 0 for 0 ≤ j ≤ dimMk− 1). Then f has a zero
of order at least dimMk at ∞. By the formula from Theorem 2.4.1, if k = 12l+ r
with r ∈ {0, 4, 6, 8, 10}, if f is not identically zero we have

l + 1 +
∑

(Γ\(H∪{cusps of Γ}))−∞

mf (z)

m(z)
= l + r/12 (38)

Since all the summands are nonnegative, this equation cannot hold and f must be
identically zero. If r = 2 then the equation is

l +
∑

(Γ\(H∪{cusps of Γ}))−∞

mf (z)

m(z)
= l + 1/6 (39)

Since the weights m(z) are less or equal than 3 and mf (z) are nonnegative integers,
this equation cannot hold either. Therefore, f is identically zero and the matrix
above is invertible, as desired.

Exercise 1, Sheet 5: Let k ∈ 2N be even and let f ∈Mk (SL2(Z), ϑtr).

16We could use, for example, the basis consisting of the monomials Ea4E
b
6 such that 4a+6b = k,

where a, b are non negative integers.
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a) Determine the constant C ∈ C such that

θkf =
1

2πi
f ′ − CE2f ∈Mk+2(SL2(Z), ϑtr)

(The resulting operator θk : Mk(SL2(Z), ϑtr)→Mk+2(SL2(Z), ϑtr) is some-
times called Serre derivative.)

b) Find the polynomial P ∈ C[X, Y ] such that θ12∆ = P (E4, E6).

Solution. Recall that E2(z) := e2(1,z)
2ζ(2)

which transforms under γ =

(
a b
c d

)
by

[E2|2γ](z) = E2(z) +
12

2πi
· c

cz + d

Now look at the derivative. Since f ∈ Mk(SL2(Z), ϑtr) we have f ◦ γ = jkγ · f .

Applying d
dz

to this relationship we get

(f ′ ◦ γ)(z) · j−2
γ = ckjk−1

γ f + jkγf
′

which is equivalent to

[f ′|k+2γ] = ckj−1
γ f + f ′.

On the other hand

[(E2f)|k+2γ] = [E2|2γ] · [f |kγ] =

(
E2 +

12c

2πi
j−1
γ

)
f.

Putting all together

(θkf)|k+2γ =
1

2πi
(f ′)|k+2γ − C(E2f)|k+2γ =

1

2πi
f ′ +

ck

2πi
j−1
γ f − CE2f − C

12c

2πi
j−1
γ f

θkf + (k − 12C)
c

2πi
j−1
γ f.

Therefore, we obtain C = k/12. Note that, by looking at the power series de-
velopment, it is clear that θk preserves holomorphicity at infinity, so that for
C = k/12 the operator θk sends Mk(SL2(Z), ϑtr) to Mk+2(SL2(Z), ϑtr). Also, if
f ∈ Sk(SL2(Z), θtr) then it is also immediate by looking at the expansion at infin-
ity that θkf ∈ Sk+2(SL2(Z), ϑtr). In particular, θ12∆ is a cusp form of weight 14,
which has to be zero. Therefore, the polynomial of part b) is P ≡ 0. �

2.5. Poincaré series. Our goal is now to construct automorphic forms for given
(discrete Fuchsian group of the first kind) Γ ⊆ SL2(R), weight k ∈ R and multiplier
system ϑ. We can carry this out under the following assumptions that will be in
place throughout this section. We assume that k > 2 and that a is a cusp of Γ,
which is singular with respect to ϑ. (Recall that a comes with a scaling matrix
σa and a generator γa of Γa. The condition that a is singular is precisely that
ϑ(γa) = 1.)
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Given a holomorphic function p : H→ C of period 1 we define the map π : Γ×
H→ C given by

π(γ, z) = ϑ(γ)w(σ−1
a , γ)jσ−1

a γ(z)−kp(σ−1
a γz).

We claim that π(γ, z) is left Γa-invariant in the first variable (i.e. it only depends
on the coset Γaγ). To see this let η ∈ Γa, put γ′ = ηγ and observe that η = σaβσ

−1
a

for β ∈
(

1 Z
0 1

)
. Since p is one periodic we have

p(σ−1
a γ′z)p(βσ−1γz

a ) = p(σ−1γz
a ).

Similarly using that jβ(∗) = 1 we get

jσ−1
a γ′(z)−k = jβσ−1

a γ(z)−k = jσ−1
a γ(z)−k.

Now we use that the cusp a is singular with respect to ϑ and observe that

ϑ(γ′) = ϑ(ηγ) = w(η, γ)ϑ(γ).

We had already observed earlier that

w(η, γ)w(σ−1
a , γ′) = w(σ−1

a , γ).

Putting these observations together allows us to deduce that π(γ′, z) = π(γ, z) as
desired.

This allows us to define the series

Pa,p(z) =
∑
Γa\Γ

π(γ, z). (40)

Before we can study convergence and other properties of Pa,p(z) we need to
develop some preliminary results concerning the decomposition of translates of Γ
into double cosets. To do so let a, b, . . . be a complete system of inequivalent cusps
of Γ. The corresponding scaling matrices are denoted by σa, σb, . . .. Let

U(Z) = ±
(

1 Z
0 1

)
,

where we suppose for simplicity that −1 ∈ Γ.17

Lemma 2.5.1. For any two cusps a, b for Γ we have the double coset decomposition

σ−1
a Γσb = δa∼bU(Z) ∪

⋃
c>0

⋃
d mod c

U(Z)

(
∗ ∗
c d

)
U(Z),

where the union is only taken over tuples (c, d) such that

(
∗ ∗
c d

)
∈ σ−1

a Γσb.

17The modifications necessary for the case when −1 6∈ Γ are straight forward.
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Proof. We first consider the subset

Ω∞ = {τ ∈ σ−1
a Γσb : τ∞ =∞}.

These are precisely the upper triangular matrices in σ−1
a Γσb. Suppose τ ∈ Ω∞.

Then we can write τ = σ−1
a γσb. We get

γb = σaτσ
−1
b b = σa∞ = a.

Thus a and b are equivalent (i.e. a ∼ b). In this case Ω∞ = U(Z) by definition of
the scaling matrix.

Any other element in σ−1
a Γσb can we written as τ =

(
a ∗
c d

)
. We compute(

1 m
0 1

)(
a ∗
c d

)(
1 n
0 1

)
=

(
a+ cm ∗

c d+ cn

)
.

In particular, the double coset Ωd/c = U(Z)

(
∗ ∗
c d

)
U(Z) determines c uniquely

and d modulo c. It is easy to observe that given τ ∈ σ−1
a Γσb with lower row (c, d),

then the double coset does not depend on the entries of the upper row. �

For applications it is often important to control the number of double cosets.
We define

C(a, b) =

{
c > 0:

(
∗ ∗
c ∗

)
∈ σ−1

a Γσb

}
.

Let c(a, b) = minC(a, b) and define c(a) = c(a, a). Finally pu ca,b = max(c(a), c(b)).

Remark 2.5.2. To see that c(a) exists we use the the following construction of
the fundamental domain Fa for σ−1

a Γσa. First note that U(Z) ⊆ σ−1
a Γσa, so that

we can chose our fundamental domain to be contained in the strip P = {z =
x+ iy : y > and 0 ≤ x ≤ 1}. We further define

E = {z ∈ H : Im(z) ≥ Im(γz) for all γ ∈ σ−1
a Γσa}.

Then Fa = E ∩ P is a fundamental domain. (It is sometimes called the standard
polygon and the construction is due to L. R. Ford.)

The isometric circle
Cγ = {z ∈ H : |jγ(z)| = 1}

for γ =

(
a b
c d

)
∈ σ−1

a Γσa \ U(Z) is centered at −d
c

and has radiues |v|−1. In

particular c(a)−1 is the radius of the largest isometric circle and therefore must
exist. This observation also gives the useful bound

c(a) = Vol({x+ iy : 0 < x < 1, y > c(a)−1}) ≤ Vol(Fa).

Concerning the numbers c(a, b) one can show that

c(a, b)2 ≥ ca,b.
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Lemma 2.5.3. For any X > 0 we have∑
0<c≤X

c−1]

{
d mod c :

(
∗ ∗
c d

)
∈ σ−1

a Γσb

}
≤ X

ca,b
.

Proof. Without loss of generality we assume that c(a) = ca,b. Suppose we have

two elements τ =

(
∗ ∗
c d

)
, τ ′ =

(
∗ ∗
c′ d′

)
in σ−1

a Γσb and with 0 < c, c ≤ X. Then

we find

τ ′′ = τ ′τ−1 =

(
∗ ∗

c′d− cd′ ∗

)
∈ σ−1

a Γσa.

If c′d − cd′ = 0, then an easy computation shows that a ∼ b and c′ = d′. If
c′d− cd′ 6= 0 we obtain the important inequality

|d
′

c′
− d

c
| ≥ c(a)

cc′
≥ c(a)

cX
. (41)

Summing this over 0 ≤ c ≤ X and 0 ≤ d ≤ c ordered by the size of the fraction d
c

gives the result. �

Lemma 2.5.4. Let a be a cusp for Γ and let z ∈ H and Y > 0. We have

]{γ ∈ Γa\Γ: Im(σ−1
a γz) > Y } < 1 +

10

c(a)Y
.

Proof. After conjugating the group we can assume without loss of generality that
a =∞ and Γa = U(Z). The vertical strip P of width 1 (defined above for example)
is a fundamental domain for Γa. Without loss of generality we can assume that z
is in the standard Polygon Fa of Γ. In particular

|cz + d| ≥ 1 for and γ =

(
∗ ∗
c d

)
∈ Γ \ U(Z).

This gives the estimate

Im(γz) =
y

|cz + d|−2
> Y.

Using this we obtain the three bounds

y > Y,

c <
1√
yY

and

|cx+ d| <
( y
Y

) 1
2
.

Recalling (41) we can estimate the number of relevant pairs (c, d) with C ≤ c < 2C
by

1 +
8C

c(a)

( y
Y

) 1
2 ≤ 10C

c(a)

( y
Y

) 1
2

(42)
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Summing these bounds over C = 2−n(yY )−
1
2 with n ≥ 1 yields 10

c(a)Y
. We add 1 to

account for Γa. �

We can now return to studying the series defined in (40). Let us first pretend
that everything converges fine and make the following computation. Given any
cusp b we have

[Pa,p|kσb](z) = jσb(z)−kPa,p(σbz)

= jσb(z)−k
∑

γ∈U(Z)\σ−1
a Γσb

π(σaγσ
−1
b , σbz)

= jσb(z)−k
∑

γ∈U(Z)\σ−1
a Γσb

ϑ(σaγσ
−1
b )w(σ−1

a , σaγσ
−1
b )jγσ−1

b
(σbz)−kp(γz)

=
∑

γ∈U(Z)\σ−1
a Γσb

ϑa,b(γ)jγ(z)−kp(γz), (43)

where

ϑa,b(γ) = ϑ(σaγσ
−1
b )w(σ−1

a , σaγσ
−1
b )w(γσ−1

b , σb).

In general this is not a multiplier system. However, if a = b, then ϑa,a = ϑa is the
multiplier system for the conjugate group σ−1

a Γσa obtained by conjugating ϑ. In
particular we have

[Pa,p|kσa](z) =
∑

γ∈U(Z)\σ−1
a Γσa

ϑa(γ)jγ(z)−kp(γz).

This looks a lot nicer than the original definition and many computations can be
reduced to considering this form by conjugation.

Lemma 2.5.5. Suppose that p is bounded and k > 2. Then the series defining
Pa,p(z) converges absolutely and defines a holomorphic function on H. Further-
more, it satisfies

[Pa,p|kτ ](z) = ϑ(τ)Pa,p(z)

for all τ ∈ Γ.

Proof. We first check convergence. Since we are assuming that p is bounded we
have to estimate ∑

Γa\Γ

|jσ−1
a γ(z)−k| = y

k
2

∑
γ∈Γa\Γ

(Im(σ−1
a γz))

k
2 .

To control this sum we recall that

]{γ ∈ Γa\Γ: Im(σ−1
a γz) > Y } < 1 +

10

c(a)Y
.

Convergence is immediate.
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To check the transformation behaviour we can conjugate the group and assume
a =∞ and σa = 1. Take τ ∈ Γ and compute

Pa,p(τz) =
∑

γ∈Γa\Γ

ϑ(γ)jγ(τz)
−kp(γτz)

=
∑

γ∈Γa\Γ

ϑ(γτ−1)jγτ−1(τz)−kp(γz).

This follows just by a simple reordering of the sum (which is allowed now). We
are done after checking that

ϑ(γτ−1) = w(γ, τ−1)ϑ(γ)ϑ(τ−1) = w(γ, τ−1)w(τ, τ−1)ϑ(τ)ϑ(γ)

and

jγτ−1(τz)−k = w(γ, τ−1)jγ(z)−kjτ−1(τz)−k = w(γ, τ−1)w(τ, τ−1)jτ (z)kjγ(z)−k.

�

The next step is to check holomorphicity at the cusps. To do this we need to
compute the Fourier expansion. We start by inserting Lemma 2.5.1 into (43):

[Pa,p|kσb](z) = δa∼bp(z) +
∑

16=γ∈U(Z)\σ−1
a Γσb/U(Z)

ϑa,b(γ)Iγ(z) (44)

where for any representative γ =

(
a b
c d

)
with c > 0 we have

Iγ(z) =
∑
n∈Z

jγTn(z)−kp(γT nz)ϑ(γnb )

=
∑
n∈Z

(c(z + n) + d)−k · p
(
a

c
− 1

c(c(z + n) + d)

)
· e(−κbn).

Applying Poisson summation to the n-sum yields

Iγ(z) =
∑
n∈Z

∫
R
(c(z + t) + d)−k · p

(
a

c
− 1

c(c(z + t) + d)

)
· e(−(n+ κb)t)dt.

A change of variables leads to

Iγ(z) =
1

c

∑
n∈Z

e((n+ κb)z)e((n+ κb)
d

c
) ·
∫ icy+∞

icy−∞
x−kp(

a

c
− 1

cx
)e(−(n+ κb)

x

c
)dx.

Note that the integral is actually independent of the path of integration taken,
so that we can replace icy by iy0 for some y0 > 0. At this point we specialize to
p(z) = e(mz) with m ∈ N. For this choice we get

Iγ(z) =
1

c

∑
n∈Z

e((n+ κb)z)e((n+ κb)
d

c
+m

a

c
) · I(m,n; c), (45)
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where

I(m,n; c) =

∫ iy0+∞

iy0−∞
x−ke

(
−m
cx
− (n+ κb)x

c

)
dx.

This evaluates to

I(m,n; c) =

2π
ik

(
n+κb
m

) k−1
2 Jk−1

(
4π
√
m(n+κb)

c

)
if n+ κb > 0,

0 else.

We define the (generalized) Kloosterman sum

Sa,b(m,n; c) =
∑

d mod c,

γ=

a ∗
c d

∈σ−1
a Γσb

ϑa,b(γ)e

(
ma+ (n+ κb)d

c

)
. (46)

Inserting (45) into (44) we find that

[Pa,p|kσb](z) = δa∼be(mz) +
∞∑
n=1

e((n+ κb)z)
∑
c>0

1

c
Sa,b(m,n; c) · I(m,n; c).

We thus have computed the Fourier expansion of the Poincaré series Pa,p at the
cusp b. Since this is an important result let us phrase it as a theorem:

Theorem 2.5.6. Let Γ be a Fuchsian group of the first kind, let k ∈ R>2 and
let ϑ be a multiplier system of weight k for Γ. Put p(z) = e(mz) with m ∈
N and assume that a is a singular cusp. Then we have the Fourier expansion
[Pa,p|kσb](z) = e(κb)

∑∞
n=b1−κbc aPa,p(n; b)e(nz) with

aPa,p(n; b) = δn=mδa∼b+
2π

ik

(
n+ κb
m

) k−1
2 ∑

c>0

1

c
Sa,b(m,n; c)·Jk−1

(
4π
√
m(n+ κb)

c

)
,

where b is any cusp and Sa,b(m,n; c) is the (generalized) Kloosterman sum defined
in (46).

Corollary 2.5.7. Under assumptions of Theorem 2.5.6 we have Pa,p ∈ Sk(Γ, ϑ).

Exercise 3, Sheet 5: Let Γ = Γ0(q) with q = rs for (r, s) = 1. Consider the two
cusps a =∞ and b = 1

r
with scaling matrices

σa = 1 and σb =

(√
s 0

r
√
s 1√

s

)
.

a) Let a′ and b′ be cusps of Γ0(q) with scalling matrices σa′ and σb′ . Suppose
that a = γ1a

′ and b = γ2b
′ for γ1, γ2 ∈ Γ0(q). Show that there are real

numbers t1, t2 independent of n and m such that

Sa′,b′(m,n; c) = e(mt1 + nt2)Sa,b(m,n; c)
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b) Show that

Sa,b(m,n; c) = e

(
n
r

s

)
S(ms, n; lr)

if c = lr
√
s with l ∈ N and (l, s) = 1 and otherwise the Kloosterman sum

is 0. In the equation above r denotes the inverse of r modulo s, and s
denotes the inverse of s modulo lr.

Solution. Part a) works for any discrete group Γ with cusps. Recall that, for two
cusps a, b and scaling matrices σa, σb we define

Cab =

{
c > 0 :

(
∗ ∗
c ∗

)
∈ σ−1

a Γσb

}
and the Kloosterman sum (for the trivial multiplier) is defined as

Sa,b(m,n; c) =
∑

( a ∗c d )∈B\σ−1
a Γσb/B

e

(
n
d

c
+m

a

c

)

where B =

{(
1 n
0 1

)
: n ∈ Z

}
. Also, if Γa is the stabilizer of a, then σ−1

a Γaσa = B

and if γ1 ∈ Γ with γ1a
′ = a then Γa′ = γ−1

1 Γaγ1. It follows that σ−1
a γ1σa′∞ = ∞

and (
σ−1
a γ1σa′

)−1
B
(
σ−1
a γ1σa′

)
= σ−1

a′ γ
−1
1 Γaγ1σa′ = σ−1

a′ Γa′σa′ = B.

This implies that σ−1
a γ1σa′ = ( 1 x

0 1 ) for some x ∈ R, so that σa′ = γ−1
1 σa ( 1 x

0 1 ).
Similarly σ−1

b γ2σb′ =
(

1 y
0 1

)
and thus σb′ = γ−1

1 σb
(

1 y
0 1

)
for some y ∈ R. It follows

that

σ−1
a′ Γσb′ =

(
1 −x
0 1

)
σ−1
a Γσb

(
1 y
0 1

)
.

Therefore, there is a bijection that sends the double coset B\σa−1Γσb/B repre-
sented by ( a ∗c d ) to the double coset of B\σ−1

a′ Γσb′/B represented by
(
a−cx ∗
c d+cy

)
(recall that in the double coset the entries a, d are defined modulo c). Therefore,
looking at the definition of the Kloosterman sum we see

S
σa′ ,σb′
a′,b′ (m,n; c) = e(−mx+ ny)Sσa,σba,b (m,n; c)

In particular, the absolute value of the Kloosterman sum is well-defined for equiv-
alent cusps (and any choice of scaling matrix). This finishes the proof of part a).

For part b) we compute(
a b
qc d

)(√
s 0

r
√
s 1√

s

)
=

(√
s(a+ rb) b√

s√
s(qc+ dr) d√

s

)
=

(√
sx y√

s√
sru v√

s

)
where a, b, c, d are integers with ad− qbc = 1 and x, y, u, v are also integers. Since
u = sc + d and (d, c) = 1 we deduce that (u, c) = 1. On the other direction if we
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start with a matrix

( √
sx y√

s√
sru v√

s

)
with xv − ruy = 1, multiply by on the right by

σ−1
b and check if the resulting matrix belongs to Γ0(q) we get(√

sx y√
s√

sru v√
s

)(
1√
s

0

−r
√
s
√
s

)
=

(
x− yr y
r(u− v) v

)
This matrix belongs to Γ0(q) if and only if u ≡ v mod(s), which by the determinant
condition is automatically a unit mod(s). Therefore

Γ0(q)σb =

{(√
sx y√

s√
sru v√

s

)
| x, y, u, v ∈ Z , xv − yur = 1 , u ≡ v mod s , (u, s) = 1

}
.

Fix u ∈ Z with (u, s) = 1. Note that, by the determinant condition, v determines
x modulo ur. Also, multiplying by elements of B on the right and left we observe
that in a double coset v is determined only modulo qu, and since we must have
v ≡ u mod , and q = rs with (r, s) = 1, by the chinese remainder theorem the

map

( √
sx y√

s√
sru v√

s

)
7→ v mod ru is injective from double cosets B\Γσb/B with fixed

u, to residues modulo ru. The image of the map are exactly the units modulo ru.
Indeed, given such a unit ε, using that (ru, s) = 1, we can find an integer v such
that v ≡ ε mod ru and v ≡ u mod s. Then, we let x be an integer representing
the inverse of ε modulo ru and we let y the unique integer such that xv− yur = 1.
The matrix with these entries is in Γ0(q)σb with the entry v as desired. Therefore,
the corresponding Kloosterman sum is

Sa,b(m,n;
√
sru) =

∑
v≡u mod(s)

v a unit mod(urs)

e

(
nv +mvs

qu

)

where v is the inverse of v modulo ru. Let s be an integer representing the inverse
of s modulo ur and u, r be integers representing the inverses of u, r respectively,
modulo s. We can parametrize v in the Kloosterman sum as v = dss + uurur
where d moves in the units modulo ur. Also, v is represented by dss. Therefore,

Sa,b(m,n;
√
sru) =

∑
d∈(Z/(ru)Z)×

e

(
ndss+ nuurur +mdsss

rsu

)

=
∑

d∈(Z/(ru)Z)×

e

(
nuur

s

)
e

(
nsd+mdss

ru

)
= e

(
nr

s

)
S(ms, n; ru).

This is what we wanted to show. �

It is not obvious that the Poincaré series are non-trivial in general. However,
using the explicit form of the Fourier coefficients one can produce estimates that
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ensure that the Poincaré series are non-zero for large enough k. This means that
we have constructed some non-trivial cusp forms in quite some generality.

Lemma 2.5.8. Let Γ be a subgroup of PSL2(R) that is discrete, finitely generated
and such that Vol(Γ\H) < ∞. Let m ∈ N and consider a cusp a of Γ. Then
there is a large enough k0 > 2 such that for any weight k ≥ k0 and any multiplier
system ϑ for Γ (of weight k) the Poincaré series Pa,p of weight k associated to θ
and p(z) = e(mz) is nonzero.

Proof. We use Theorem 2.5.6 to write

(Pa,p|kσa)(z) = e(κaz)
∞∑

n=b1−κac

aPa,p(n; a)e(nz)

where

aPa,p(n; a) = δn=m +
2π

ik

(
n+ κa
m

) k−1
2 ∑

c>0

1

c
Sa,a(m,n; c)Jk−1

(
4π
√
m(n+ κa)

c

)
In particular, for n = m this has the form 1+E and we want to show that for large
k the stuff E is less than 1 in absolute value. It is important here that κa ∈ [0, 1),
in particular it is bounded. Recall that we have a bound∑

0<c≤X

1

c
|Sa,a(m,n; c)| ≤ c(a)−1X

where c(a) is the minimum moduli of the cusp a. Also, we have a power series
expansion (valid for example for Re(z) > 0)

Jk−1(z) =
(z

2

)k−1
∞∑
r=0

(−1)r
(

1
4
z2
)r

r!Γ(k + r)
.

For k ≥ 1 we can bound trivially (this is a very bad bound when z is large but it
is enough for our purposes)

|Jk−1(z)| ≤ 21−k |z|k−1

Γ(k)
exp

(
|z|2

4

)
.

In particular, since we fixed m = n, κa ≤ 1 and the moduli satisfy c ≥ c(a) we see

that 4π
√
m2+mκa
c

is bounded. Therefore

Jk−1

(
4π
√
m2 +mκa
c

)
≤ A(2π

√
m2 +mκa)

k−1c1−kΓ(k)−1

for some A > 0 (we have disposed of the bad term exp(|z|2/4) noticing that it is

bounded, since z = 4π
√
m2+mκa
c

remains bounded). Therefore

|
∑
c>0

1

c
Sa,a(m,n; c)Jk−1

(
4π
√
m(n+ κa)

c

)
| ≤ A(2π)k−1(2m2)

k−1
2

Γ(k)

∑
c>0

c−k|Sa,a(m,n; c)|.
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Using the trivial bound (47) and integrating by parts we get∑
c>0

c−k|Sa,a(m,n; c)| ≤ 2k − 3

k − 2
c(a)1−k

(note that k > 2). One can also obtain this bound dyadically, by individually
estimating the contributions of 2nc(a) ≤ c < 2n+1c(a) and summing over i ≥ 0
(this gives a worse constant 2

1−22−k , but it is the same for our purposes). Putting
it all together, we obtain

aPa,p(m; a) = 1 +
2π

ik

(
m+ κa
m

) k−1
2 ∑

c>0

1

c
Sa,a(m,m; c)Jk−1

(
4π
√
m(m+ κa)

c

)

= 1 +O

((
1 +

1

m

) k−1
2 (2π)k−1(2m2)

k−1
2

Γ(k)

2k − 3

k − 2
c(a)1−k

)
. (47)

Using the Stirling formula for the Gamma function

Γ(k) ∼
√

2πe−kkk−1/2 as k →∞

one sees that the error in (47) tends to 0 when k → ∞. Therefore, since one of
the Fourier coefficients of Pa,p is not zero, it must be that Pa,p is a non-zero cusp
form of weight k and multiplier ϑ. �

The Poincaré series also satisfy the following interesting property:

Theorem 2.5.9. Let Γ be a Fuchsian group of the first kind, let k ∈ R>2 and let
ϑ be a multiplier system of weight k for Γ. Put p(z) = e(mz) with m ∈ N and
assume that a is a singular cusp. Then, for f ∈ Sk(Γ, ϑ) we have

〈f, Pa,p〉 =
Γ(k − 1)

(4πm)k−1
· af (m; a).

Proof. Without loss of generality we can assume that a = ∞ and σa = 1. We
simply compute

〈f, Pa,p〉 =

∫
Γ\H

Im(z)kf(z)Pa,p(z)dµ(z)

=

∫
Γ\H

∑
γ∈U(Z)\Γ

Im(z)k f(z)ϑ(γ)jγ(z)
−k︸ ︷︷ ︸

=|jγ(z)|−2kf(γz)

e(mγz)dµ(z)

=

∫
Γ\H

∑
γ∈U(Z)\Γ

Im(γz)kf(γz)e(mγz)dµ(z).

Recall that the integral
∫

Γ\H . . . dµ(z) is understood to be an integral over a suitable

fundamental domain F of Γ. Interchanging sum and integral as well as a change
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of variables then yields

〈f, Pa,p〉 =
∑

γ∈U(Z)\Γ

∫
γF

Im(z)kf(z)e(mz)dµ(z) =

∫
U(Z)\H

Im(z)kf(z)e(mz)dµ(z).

Inserting the Fourier expansion of f (at a = ∞) makes it easy to compute the
remaining integral:

〈f, Pa,p〉 =
∞∑
n=1

af (n; a)

∫ 1

0

e(x(n−m))dx

∫ ∞
0

yk−2e−2π(n+m)ydy.

The x-integral evaluates to δm=n and recognising the y-integral as a Γ-function
gives the desired result. �

We can now establish the following very strong formula, which will later play a
crucial role in applications.

Theorem 2.5.10 (Petersson Formula). Let Γ be a Fuchsian group of the first kind,
let k ∈ R>2 and let ϑ be a multiplier system of weight k for Γ. For two singular
cusps a, b of Γ we have

Γ(k − 1)

(4π
√
mn)k−1

·
∑
f∈O

af (m; a) · af (n; b)

= δm=nδa∼b + 2πi−k
∑
c>0

c−1Sa,b(m,n; c)Jk−1(
4π
√
mn

c
),

where O is an orthonormal basis of Sk(Γ, ϑ).

Remark 2.5.11. Note that there are no convergence issues on the right hand side
of the formula, since Sk(Γ, ϑ) is finite dimensional. See Lemma 2.3.4 above.18

Proof. Let p(z) = e(mz) and p′(z) = e(nz). Then we first write

Pa,p(z) =
∑
f∈O

〈Pa,p, f〉f(z) =
Γ(k − 1)

(4πm)k−1

∑
f∈O

af (m; a) · f(z).

This way we can compute

〈Pa,p, Pb,p′〉 =
Γ(k − 1)

(4πm)k−1

∑
f∈O

af (m; a)·〈f, Pb,p′〉 =
Γ(k − 1)2

(42π2mn)k−1

∑
f∈O

af (m; a)·af (n; b).

On the other hand we have

〈Pa,p, Pb,p′〉 =
Γ(k − 1)

(4πm)k−1
aPa,p(n; b).

Evaluating aPa,p(n; b) using Theorem 2.5.6 and combining the two expressions for
〈Pa,p, Pb,p′〉 gives the desired result. �

18This was not discussed in the lecture and added there afterwards for completeness.
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Example 2.5.12. For our amusement we can apply the Petersson formula in the
following special situation. Take k = 12, Γ = SL2(Z) and ϑ = ϑtr. Recall that

S12(SL2(Z), ϑtr) = C · ∆ so that we can take O = {∆/〈∆,∆〉 1
2}. On the other

hand the essentially only choice of (singular) cusps is a = b =∞ and in this case
the Kloosterman sum takes the shape

S(m,n; c) = S∞,∞(m,n; c) =
∑

d mod c,
(c,d)=1

e

(
nd+md

c

)
,

where d · d ≡ 1 mod c. Thus the Petersson formula for m = 1 and n ∈ N reads

Γ(11)

(4π)11
· n−

11
2 · τ(n)

〈∆,∆〉
= δn=1 + 2π

∑
c∈N

S(1, n; c)

c
J11

(
4π
√
n

c

)
.

Is this formula helpful in understanding the properties of τ(n)?

Exercise 2, Sheet 5: Let ∆ =
∑∞

n=1 τ(n)e(nz) ∈ S12(SL2(Z), ϑtr) be the Ra-
manujan ∆-function. Show that

τ(m)τ(n) =
∑
d|(m,n)

d11τ
(mn
d2

)
(48)

Manual:

i) Use the Petersson Formula (i.e. Theorem 2.5.9 of the lecture notes) to
write down an expression for τ(n)τ(m) in terms of Kloosterman sums and
J-Bessel functions.

ii) Manipulate the resulting right hand side using the identities19

S(m,n; c) =
∑

d|(c,m,n)

dS(mnd−2, 1; cd−1) (49)

and

δm=n =
∑
d|(m,n)

δ1=mn
d2

(50)

Solution. By the Petersson Formula (Theorem 2.5.10), since S12(SL2(Z), ϑtr) is one
dimensional and ∆ 6= 0, we have

τ(m)τ(n) =
(4π
√
mn)11

Γ(11)
‖∆‖2

L2

(
δm=n + 2π

∑
c>0

c−1S(m,n; c)J11

(
4π
√
mn

c

))
(51)

19A brief elementary proof of Selberg’s identity (49) can be found in the note Selberg’s identity
for Kloosterman sums by G. Harcos and G. Károlyi.
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Since τ(1) = 1, in particular

d11τ(
mn

d2
) =

(4π
√
mn)11

Γ(11)
‖∆‖2

L2

(
δmn
d2

=1 + 2π
∑
c>0

c−1S
(mn
d2
, 1; c

)
J11

(
4π
√
mn

cd

))
for any d|(m,n). It is now clear that the part involving delta functions in (48)
follows immediately from identity (50). On the other hand, we can use (49) to
rewrite the sum of Kloosterman sums in a different way

∞∑
c=1

c−1Sa,b(m,n; c)J11

(
4π
√
mn

c

)
=
∞∑
c=1

∑
d|(m,n,c)

d

c
S
(mn
d2
, 1;

c

d

)
J11

(
4π
√

mn
d2

c
d

)

=
∑
d|(m,n)

∞∑
r=1

r−1S
(mn
d2
, 1; r

)
J11

(
4π
√

mn
d2

r

)
where we have changed variables c = rd. Therefore,

τ(m)τ(n) =
(4π
√
mn)11

Γ(11)
‖∆‖2

L2

∑
d|(m,n)

(
δ1=mn

d2
+ 2π

∞∑
r=1

r−1S
(mn
d2
, 1; r

)
J11

(
4π
√

mn
d2

r

))

=
∑
d|(m,n)

d11τ
(mn
d2

)
as desired. �

Exercise 3, Sheet 8: For a fixed prime p we consider the space L2(Z/pZ) of p-
periodic functions from Z to C. We equip Z/pZ with the Haar probability measure
so that the inner product is given by

〈G,H〉 =
1

p

∑
n mod p

G(n)H(n), for G,H ∈ L2(Z/pZ).

For G ∈ L2(Z/pZ) we define the normalized Fourier transform by

Ĝ(h) =
1
√
p

∑
n mod p

G(n)e

(
hn

p

)
.

Further we set

Ǧ(n) =
1
√
p

∑
h mod p
(h,p)=1

Ĝ(h)e

(
hn

p

)
.

a) Let (a, q) = 1 and set K(n) = 1√
p
S(1, an; p). Compute K̂ and show that

Ǩ(n) =

{
p−1√
p

if n ≡ a mod p,

− 1√
p

else.
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b) Determine the kernel of the map (̌·) : L2(Z/pZ) → L2(Z/pZ) and show

that (̌·) is self-inverse on ker
(

(̌·)
)⊥

.

Solution. For part a), we compute directly

K̂(h) =
1

p

∑
n mod p

∑
d mod p
(d,p)=1

e

(
dan+ d

p

)
e

(
hn

p

)
=

1

p

∑
d mod p
(h,p)=1

e

(
d

p

) ∑
n mod p

e

(
n(da+ h)

p

)
.

The inner sum is 0 unless da + h = 0 modulo p. Since a, d are invertible we have
two options. If h = 0 then the inner sum is always 0 and K̂(h) = 0. Otherwise,

da+h = 0 modulo p exactly for d = −ah, and we find K̂(h) = e
(
−ah
p

)
. Therefore,

we have

Ǩ(n) =
1
√
p

∑
h mod p
(h,p)=1

e

(
(n− a)h

p

)
.

Since
∑p−1

i=1 e
(
ai
p

)
= p−1 or −1 according to whether a is 0 or not modulo p, part

a) is clear.

For part b), observe that G 7→ Ĝ, which we will denote by F(G), is the Fourier
transform, which is an isometry in L2(Z/pZ) whose inverse is given by

F−1(G)(n) :=
1
√
p

∑
h mod p

G(h)e

(
−hn
p

)
.

Denote by P : L2(Z/pZ) → L2(Z/pZ) the map P (f)(n) = f(n) if n 6≡ 0 and
P (f) = 0 otherwise. If δ ∈ L2(Z/pZ) is the function described by δ(0) =

√
p

and δ(n) = 0 for n 6≡ 0 modulo n, then P is the orthogonal projection onto the
orthogonal complement of P . Let H := 〈δ〉⊥. Clearly, 〈δ〉 is the kernel of P , and
P acts like the identity on H. Also, consider the isometric involution described by
S(f)(0) = f(0) and S(f)(n) = f(−n) for n 6≡ 0 modulo p. We have S2 = Id, and

it follows that S ◦ P is self-inverse on H. The map (̌·) described in the exercise is
precisely F−1 ◦ S ◦ P ◦ F . Therefore,

ker
(

(̌·)
)

= F−1(〈δ〉) = 〈const1〉,

F−1(H) = 〈const1〉)⊥ = {f ∈ L2(Z/pZ) :
∑

n mod p

f(n) = 0}

and (̌·) is self-inverse on the subspace F−1(H). �
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Remark 2.5.13. To check that F and F−1 are inverse isometries, simply observe

that F(
√
pδn) = e

(
·n
p

)
and F−1

(
e
(
·n
p

))
=
√
pδn, and check that the sets

{√pδn}n mod p and
{
e
(
·n
p

)}
n mod p

are orthonormal basis.

Exercise 4 (Bonus), Sheet 7: The goal of this exercise is to verify

E1,χ−4(z) :=
1

4
+
∞∑
n=1

∑
d|n

χ−4(d)

 e(nz) ∈M1(Γ0(4), χ−4). (52)

We start by defining

E1,χ−4(z, s) =
∑

(0,0) 6=(c,d)∈Z2

4|c

χ−4(d)

cz + d
· |cz + d|−2s, (53)

for Re(s) > 1
2
.

a) Modify the argument leading to Theorem 2.5.6 of the lecture notes to
compute the Fourier expansion of E1,χ−4(z, s) at ∞.

b) Show that E1,χ−4(z, s) has an analytic continuation to Re(s) = 0. This
allows us to define E1,χ−4(z, 0). Here it can be used that the Dirichlet
L-function L(s, χ−4) defined by

∑
n∈N χ−4(n)n−s when Re(s) > 1 has an

analytic continuation to s ∈ C.
c) Relate E1,χ−4(z) to E1,χ−4(z, s) and deduce (52). It can be used that
L(0, χ−4) = 1

2
and L(1, χ−4) = π

4
.

Solution. We can write

E1,χ−4(z, s) = 2L(1 + 2s, χ−4) + 2
∞∑
c=1

∑
n∈Z

1

(4cz + 4n+ 1)|4cz + 4n+ 1|2s

− 2
∞∑
c=1

∑
n∈Z

1

(4cz + 4n+ 3)|4cz + 4n+ 3|−2s
(54)

We want to apply Poisson summation formula to the function

fw,s(x) :=
1

(w + x)|w + x|2s

for certain choices of w = u+ iv ∈ Hp. First we calculate the Fourier transform

f̂w,s(α) :=

∫
R

e(−αt)
(u+ iv + t)|u+ iv + t|2s

dt = e(αu)

∫
R

e(−αt)
(iv + t)|iv + t|2s

dt

= e(αu)v−2s

∫
R

e(−αvt)
(i+ t)|i+ t|2s

= e(αu)v−2s

(∫
R

te(−αvt)
(t2 + 1)s+1

dt− i
∫
R

e(−αvt)
(t2 + 1)s+1

dt

)
= e(αu)v−2s

(
−iπαv

s

∫
R

e(−αvt)
(t2 + 1)s

dt− i
∫
R

e(−αvt)
(t2 + 1)s+1

dt

)
.
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This is Basset’s integral, which is very important for the spectral theory of auto-
morphic forms. It is related to the modified K-Bessel function in the following
way:

Γ(s)

∫
R

e(βt)

(1 + t2)s
dt =

∫
R

∫ ∞
0

(
x

t2 + 1

)s
e2πiβte−x

dx

x
dt =

∫ ∞
0

xs−1e−x
∫
R
e2πiβte−t

2x dt dx

=
√
π

∫ ∞
0

xs−
3
2 e−xe−

π2β2

x dx.

When β = 0 we arrive at ∫
R

dt

(1 + t2)s
=
√
π

Γ(s− 1/2)

Γ(s)
.

When β 6= 0, we change variables x = π|β|t obtaining∫
R

e(βt)

(1 + t2)s
dt =

πsβs−1/2

Γ(s)

∫ ∞
0

xs−3/2e−πβ(x+ 1
x

) dx = 2
πs|β|s−1/2

Γ(s)
Ks−1/2(2π|β|)

where one can take as definition

Ks(z) =
1

2

∫ ∞
0

xs−1e−
z
2

(x+ 1
x

) dx

for Re(z) > 0 and s ∈ C. This is the modified Bessel function of the second kind of
order s and argument z. Although at first we need Re(s) > 1

2
for the computations

above to be valid, we observe that Ks(z) is an entire function of s for fixed z. Also,
note that

Ks(z) = K−s(z)

as follows immediately from making the change of variables x 7→ x−1 in the integral
defining Ks(z). In order to perform the analytic continuation of E1,χ−4(z, s) in the
variable s we will need uniform bounds for Ks(z) where a ≤ Re(s) ≤ b and
Re(z) ≥ c. We show that there is a constant C = C(a, b, c) such that

|Ks(z)| ≤ Ce−Re(z)

for all such s and z. Let 0 < ε < c/2, and find C big enough such that
max(xb−1, x−a−1) ≤ Ceεx for x ≥ 1. Then, using x + 1/x ≥ 2 for x > 0 we
obtain

|Ks(z)| ≤ 1

2

∫ ∞
1

xb−1e−
Re(z)

2
(x+ 1

x
) dx+

1

2

∫ ∞
1

x−a−1e−
Re(z)

2
(x+ 1

x
) dx

≤ Ce−Re(z)

∫ ∞
1

e−
Re(z)

2
(x+ 1

x
−2)+εx dx ≤ Ce−Re(z)

∫ ∞
1

e−
c
2

(x+ 1
x
−2)+εx dx

≤ C
e−

c
2

+ε

c/2− ε
e−Re(z) ≤ C1e

−Re(z)
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as desired. Coming back to the Fourier transform of fw,s for w = u + iv, we can
write

f̂w,s(α) = −2e(αu)v−2s

(
παv

s

πs|αv|s−1/2

Γ(s)
Ks−1/2(2π|αv|) + i

πs+1|αv|s+1/2

Γ(s+ 1)
Ks+1/2(2π|αv|)

)
for α 6= 0, and

f̂w,s(0) = −i
√
πv−2sΓ(s+ 1/2)

Γ(s+ 1)

for α = 0. Applying Poisson summation formula to fw,s for w = cz + 1/4 we get

∑
n∈Z

1

(4cz + 4n+ 1)|4cz + 4n+ 1|2s

= 4−2s−1
∑
n∈Z

1

(cz + 1/4 + n)|cz + 1/4 + n|2s
= 4−2s−1

∑
n∈Z

f̂w,s(n)

=− i4−2s−1
√
π(cy)−2sΓ(s+ 1/2)

Γ(s+ 1)
− 2 · 4−2s−1

∑
06=n∈Z

e(n(cx+ 1/4))(cy)−2s

×

[
i
πncy

s

πs|ncy|s−1/2

Γ(s)
Ks−1/2(2π|ncy|) + i

πs+1|ncy|s+1/2

Γ(s+ 1)
Ks+1/2(2π|ncy|)

]

Similarly∑
n∈Z

1

(4cz + 4n+ 3)|4cz + 4n+ 3|2s
= 4−2s−1

∑
n∈Z

1

(cz + 3/4 + n)|cz + 3/4 + n|2s

= −i4−2s−1
√
π(cy)−2sΓ(s+ 1/2)

Γ(s+ 1)
− 2 · 4−2s−1

∑
06=n∈Z

e(n(cx+ 3/4))(cy)−2s×[
i
πncy

s

πs|ncy|s−1/2

Γ(s)
Ks−1/2(2π|ncy|) + i

πs+1|ncy|s+1/2

Γ(s+ 1)
Ks+1/2(2π|ncy|)

]
.

Recalling (54), we arrive at

E1,χ−4(z, s) = 2L(1 + 2s, χ−4)− 4−2s

∞∑
c=1

∑
06=n∈Z

(
e
(n

4

)
− e

(
3n

4

))
(cy)−2s×[

i
πncy

s

πs|ncy|s−1/2

Γ(s)
Ks−1/2(2π|ncy|) + i

πs+1|ncy|s+1/2

Γ(s+ 1)
Ks+1/2(2π|ncy|)

]
e(ncx).
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Note that for fixed y > 0 the double series converges absolutely since Re(s) > 1/2,
and because of our bound for Ks. Writing m = cn can rewrite the double sum as

E1,χ−4(z, s) = 2L(1 + 2s, χ−4)− 4−2sy−2s

∞∑
06=m∈Z

∑
c|m

c−2s

(
e
(m

4c

)
− e

(
3m

4c

))
×

[
i
πmy

s

πs|my|s−1/2

Γ(s)
Ks−1/2(2π|my|) + i

πs+1|my|s+1/2

Γ(s+ 1)
Ks+1/2(2π|my|)

]
e(mx).

Now, because of our bound for Ks, and the fact that L(s, χ−4) and 1
sΓ(s)

= 1
Γ(s+1)

are entire functions, we deduce that E1,χ−4(z, ·) has an analytic continuation to C.
Evaluating this continuation at s = 0 and using K1/2(·) = K−1/2(·) we see that

E1,χ4(z, 0) = 2L(1, χ−4)−
∞∑

06=m∈Z

∑
c|m

(
e
(m

4c

)
− e

(
3m

4c

))
×

[
i sgn(m)π

√
|m|yK1/2(2π|my|) + iπ

√
|m|yK1/2(2π|my|)

]
e(mx) (55)

= 2L(1, χ−4)− 2πi
∞∑
m=1

∑
c|m

(
e
(m

4c

)
− e

(
3m

4c

))
√
myK1/2(2πmy)e(mx)

For holomorphicity at infinity we need to look at K1/2(2πmy) more closely. Let
Re(z) > 0. Then

K1/2(z) =
1

2

∫ ∞
0

1√
x
e−

z
2

(x+1/x) dx =
e−z

2

∫ ∞
0

1√
x
e
− z

2
(
√
x− 1√

x
)2

dx

= e−z
∫ ∞

0

e−
z
2

(u−1/u)2

du = e−z
∫
R

(
1

2
+

t

2
√
t2 + 4

)
e−

z
2
t2 dt

= e−z
1

2

√
2π√
z

∫
R
e−πx

2

dx =

√
π√
2z
e−z

where the square root is the principal branch. We have used the change of variables

u = t+
√
t2+4
2

that maps R bijectively onto (0,∞). Coming back to E1,χ−4(z, 0), we
have

E1,χ−4(z, 0) = 2L(1, χ−4)− πi
∞∑
m=1

∑
c|m

(
e
(m

4c

)
− e

(
3m

4c

))
e−2πmye(mx)

= 2L(1, χ−4)− πi
∞∑
m=1

∑
c|m

(
e
(m

4c

)
− e

(
3m

4c

))
e(mz).
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To evaluate the sum over divisors, observe that∑
c|m

(
e
(m

4c

)
− e

(
3m

4c

))
=
∑
d|m

(
e

(
d

4

)
− e

(
3d

4

))
.

If d is even, then expression in the bracket is 0. When d ≡ 1 mod 4, the expression
is 2i, and when d ≡ 3 mod 4, the expression is −2i. Therefore,

E1,χ−4(z, 0) = 2L(1, χ−4) + 2π
∞∑
m=1

∑
d|m

χ−4(d)

 e(mz).

Finally, using that L(1, χ−4) = π/4 we arrive at

E1,χ−4(z, 0) = 2π

1

4
+
∞∑
m=1

∑
d|m

χ−4(d)

 e(mz)

 = 2πE1,χ−4(z).

The only thing left to prove is that E1,χ−4(z, 0) ∈M1(Γ0(4), χ−4). Observe that

E1,χ−4(z, s) :=
∑

(0,0) 6=(c,d)∈Z2

4|c

χ−4(d)

cz + d
· |cz + d|−2s = ζ(1 + 2s)

∑
(c,d)=1

4|c

χ−4(d)

cz + d
· |cz + d|−2s

= ζ(1 + 2s)
∑

γ∈B\Γ0(4)

jγ(z)−1|jγ(z)|−2sχ−4(γ).

Therefore, applying the slash operator for δ ∈ Γ0(4)

[E1,χ−4(·, s)|1δ](z) = ζ(1 + 2s)
∑

γ∈B\Γ0(4)

jδ(z)−1jγ(δz)
−1|jγ(δz)|−2sχ−4(γ)

= |jδ(z)|2sχ−4(δ)E1,χ−4(z, s)

where we have used that χ−4 = χ−1
−4. The relation above holds for Re(s) > 1/2.

Fixing z and δ ∈ Γ0(4) and looking at both sides as holomorphic functions on s,
by analytic continuation we get

[E1,χ−4(·, 0)|1δ](z) = χ−4(δ)E1,χ−4(z, 0) (56)

and the same holds for E1,χ−4(·). Finally, we need to show holomorphicity at all
the cusps. These can be done by mimicking the proof of Theorem 2.5.6, finding
the expansion at at a different cusp and performing the analytic continuation on
s. However, there is a fast way of concluding from facts we have learned from
the course. Recall Lemma 2.3.2, which says that if E1,χ−4(·) is holomorphic and
satisfies [E1,χ−4|γ] = χ−4(γ)E1,χ−4 , then E1,χ−4(·) ∈ M1(Γ0(4), χ−4) if and only if

|yk/2f(x + iy)| ≤ C(yA + y−A) for some C,A > 0. Since it is holomorphic at ∞,
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it is clear that |E1,χ−4(z)| ≤ C for some C > 0 and all Im(z) ≥ 1. For Im(z) ≤ 1
observe that, for any 1 > ε > 0 and y ≤ 1/(2π), we have

4|E1,χ−4(z)| ≤ 1 + 4
∞∑
n=1

σ0(n) exp(−2πny) ≤ 1 + C1

∞∑
n=1

nε exp(−2πny)

≤ 1 + C1d
1

πy
e1+ε + C1(2πy)−1−ε · 2πy

∞∑
n=d 1

πy
e

(2πyn)ε exp(−2πyn)

≤ 1 + C1d
1

πy
e1+ε + C1(2πy)−1−ε

∫ ∞
1

xεe−x dx ≤ C(1 + y−1−ε)

where we have used σ0(n) ≤ Cnε for a constant depending on ε, and we have
bounded the series by the corresponding integral, using that xεe−x is decreasing
for x ≥ ε. Therefore, E1,χ−4 is polynomially bounded, and we conclude that it
must be in M1(Γ0(4), χ−4), as desired. �

3. Intermezzo: Theta Series

We consider the following space of matrices

SPk = {A ∈ Matk×k(Z) |A > 0, symmetric

and the diagonal entries of A are even},

where k ∈ N. Given A ∈ SPk we can write A = BtB for a real matrix B. There
is a minimal NA ∈ N such that NA ·A−1 ∈ SPk. This integer is called the level of
A. To A ∈ SPk we can associate the quadratic form

QA(x) =
1

2
xtAx =

1

2
A[x].

Let Pl(x) = P (x1, . . . , xk) be a homogeneous polynomial of degree l. We call Pl
harmonic, if

∆Pl = 0,

where ∆ = ∂2

∂x2
1

+ . . . + ∂2

∂x2
k
. We denote the space of homogeneous harmonic poly-

nomials of degree l by Hl. Since for Pl ∈ Hl we can write

Pl(x) = |x|lPl(
x

|x|
)

it is completely determined by its values on

Sk−1 = {x ∈ Rn : |x| = 1} = SO(k)/SO(k − 1).

Thus Hl is isomorphic to

El = {P |Sk−1 : P ∈ Hl}.
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The importance of these function spaces lies in the decomposition

L2(Sk−1) =
⊕

l∈N∪{0}

El.

where Sk−1 is equipped with the rotation invariant measure

dµ(θ) =
1

2
π−

k
2 Γ(

k

2
)
∏

1≤j<k

sin(θ)j−1
j dθj

in coordinates

x1 = sin(θk−1) · · · sin(θ2) sin(θ1), x2 = sin(θk−1) · · · sin(θ2) cos(θ1),

. . . , xk−1 = sin(θk−1) cos(θk−1), xk = cos(θk−1)

with 0 ≤ θ1 < 2π and 0 ≤ θj < π if 1 < j < k. This is nothing but the
spectral expansion (Friedrichs extension) of the Laplacian ∆Sk−1 acting on (smooth
functions in) L2(Sk−1). Indeed one easily checks that

∆Sk−1Pl = −l(l + k − 2)Pl for Pl ∈ El.

Here the ∆Sk−1 is the Laplace-Beltrami operator on the (positively curved) Rie-
mannian manifold Sk−1, but for our purposes it suffices to know that it arises by
writing

∆ =
∂2

∂r2
+
k − 1

r

∂

∂r
+

1

r2
∆Sk−1

in polar coordinates.

Definition 3.0.1. Let A ∈ SPk, Pl be a harmonic polynomial, z ∈ H and r of
the congruence

Ar ≡ 0 mod NA.

Then we define the (generalised) theta series

θPl,QA(z, r) =
∑
n∈Zk

Pl
(
B(n+N−1r)

)
e

(
1

2
A[n+N−1r]z

)
.

There are (at least) two obvious things to note:

• θPl,QA(z,−r) = (−1)lθPl,QA(z, r); and
• θPl,QA(z, r) depends only on r modulo NA.
• θPl,QA(z, r) = N−lA

∑
m≡l mod NA

Pl(Bm)e( 1
2N2

A
A[m]z).

We are now going to study the transformation behavior under the action of
SL2(Z) on z. Recall that this group is generated by

T =

(
1 1
0 1

)
and S =

(
0 1
−1 0

)
.
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Lemma 3.0.1. [
θPl,QA(·, r)| k

2
+lT
]

(z) = e

(
1

2N2
rtAr

)
θPl,QA(z, r).

Proof. This follows directly form the definition of θPl,QA . �

We now prove a kind of functional equation which is crucial for our further
analysis.

Lemma 3.0.2. Under current assumptions we have∑
m∈Zk

Pl(B(m + x))e

(
1

2
A[m + x]z

)

=
i−l(i/z)

k
2

+l√
|det(A)|

∑
m∈Zk

Pl(B
−tm)e

(
− 1

2z
A−1[m] + mtx

)
For l = 0 the proof is a straight forward application of Poisson summation and

the direct evaluation of the Gaussian integral. In most modern expositions one
deduces the general case by applying suitable integral operators. However, we will
use a proof given by Eichler in 1973.

Proof. We set

f(x) =
∑
m∈Zk

Pl(B(m + x))e

(
1

2
A[m + x]z

)
.

Since the sum converges absolute and uniformly (for fixed z ∈ H) f determines a
continuous function with period 1 in each argument. Thus we obtain the Fourier
expansion

f(x) =
∑
n∈Zk

cne(n
tx) (57)

with coefficients

cn =

∫ 1

0

. . .

∫ 1

0

f(x)e(−ntx)dx1 . . . dxk

=
∑
m∈Zk

∫ 1

0

. . .

∫ 1

0

Pl(B(m + x))e

(
1

2
(m + x)tA(m + x)z − ntx

)
dx1 . . . dxk

=

∫
R
. . .

∫
R
Pl(Bx)e

(
1

2
xtAxz − ntx

)
dx1 . . . dxk.

Since the integrand is holomorphic we can make the change of variables x −
z−1A−1n 7→ x and shift the contour back to the real line. Thus we obtain

cn = e(−1

2
ntA−1nz−1)

∫
R
. . .

∫
R
Pl(Bx + z−1B−tn)e

(
1

2
xtAxz

)
dx1 . . . dxk.
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By holomorphicity in z it is enough to compute the integral for z = iy with y > 0.
We make the change of variables

√
yBx 7→ x, which yields

cn =
e(−1

2
ntA−1nz−1)

y
k
2

+l det(B)

∫
R
. . .

∫
R
Pl(
√
yx− iB−tn)e

(
i

2
xtx

)
dx1 . . . dxk.

At this point we spectrally expand

Pl(
√
yx− iB−tn) = (−i)lPl(B−tn) +

∑
deg(Q)>0

bQQ(x)

in harmonic polynomials Q, which are orthogonal with respect to integration over
the unit sphere. We now switch to polar coordinates. Note that by orthogonality
we have ∫

Sk−1

Q(x)dx = 0

for all Q with deg(Q) > 0. We arrive at

cn = Vol(Sk−1)
(−i)l(i/z)

k
2

+l

det(B)
e(−1

2
ntA−1nz−1)Pl(B

−tn)

∫ ∞
0

e−πr
2

rk−1dr.

Inserting this formula for the Fourier coefficients in (57) completes the proof. �

Corollary 3.0.3. We have

θPl,QA(−z−1, r) =
i−l(−iz)

k
2

+l√
|det(A)|

∑
Al≡0 mod NA

ψ(r, l)θPl,QA(z, l),

for ψ(r, l) = e
(

ltAr
N2
A

)
.

Proof. There is a one to one correspondence between m ∈ Z2k and n ∈ Z2k such
that An ≡ 0 mod NA, which is explicitly given by n = NAA

−1m. Using the
previous lemma with x = N−1

A r we find

θPl,QA(−z−1, r) =
ik(−z)

k
2

+l√
|detA|

∑
n∈Zk,

An≡0 mod NA

Pl(BnN−1
A )e

(
ntAn

2N2
A

z +
ntAr

N2
A

)
.

The result follows directly from rearranging te n-sum. �

Exercise 3, Sheet 6:

a) Suppose A ∈ SPk and A−1 ∈ SPk. Show that k is even. (Recall that
SPk is the set of positive definite symmetric integral matrices with even
diagonal.)

b) Show that there is A ∈ SPk such that θ1,QA(z) ∈ M k
2

(SL2(Z), ϑtr) if and

only if k ≡ 0 mod 8.
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Solution. For part a), we simply look at the trace. Let B,C be symmetric matrices.
Then

Tr(BC) =
∑
i

(BC)ii =
∑
i

Bi
iC

i
i +
∑
i<j

Bi
jC

j
i +

∑
i>j

Bi
jC

j
i

=
∑
i

Bi
iC

i
i +
∑
i<j

Bi
jC

j
i +

∑
i>j

Bj
iC

i
j (58)

=
∑
i

Bi
iC

i
i + 2

∑
i<j

Bi
jC

j
i

where the symmetry of B,C is used in the third equality. The last equality follows
by swapping the indexes i, j. If, in addition, one of B,C has even diagonal, we
deduce that Tr(BC) is even. Also, if BC = Id then Tr(BC) = k. Therefore, if A
is a symmetric matrix such that both A and A−1 have integer entries and one of
them is in SPk, then k is even.

For part b), assume that there is A ∈ SPk such that θ1,QA(z) ∈M k
2
(SL2(Z), ϑtr).

Since θtr is a multiplier system only for even integers, this implies immediately that
k/2 is an even integer. Also, recall Corollary 3.0.3, which states that

θPl,QA(−z−1, r) =
i−l(−iz)

k
2

+l√
| det(A)|

∑
Al≡0 mod NA

ψ(r, l)θPl,QA(z, l).

In our case, l = 0, Pl = 1 and r ≡ 0 mod NA, which implies ψ(r, l) = 1. Therefore,
for we deduce

zk/2θ1,QA(z) = [θ1,QA| k
2
S](−z−1) = θ1,QA(−z−1) =

(−iz)
k
2√

det(A)

∑
Al≡0 mod NA

θ1,QA(z, l)

where S =

(
0 −1
1 0

)
∈ SL2(Z) and we used the hypothesis that θ1,QA ∈M k

2
(SL2(Z), ϑtr).

Canceling the power of z,

θ1,QA(z) =
(−i)k/2√

det(A)

∑
Al≡0 mod NA

θ1,QA(z, l) (59)

Recall the definition

θ1,QA(z, l) =
∑
n∈Zk

e

(
1

2
A[n +N−1

A l]z

)
and observe that, since A is positive definite, θ1,QA(z, l) has a nonzero constant co-
efficient iff l ≡ 0 mod NA, in which case the coefficient is 1. Therefore, comparing
constant coefficients in (59) we deduce

(−i)k/2 =
√

det(A)
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which implies det(A) = 1 and k ≡ 0 mod 8.

For the other direction, note that if we are given A1 ∈ SPk and A2 ∈ SP l and
we define A1 ⊕ A2 by

A1 ⊕ A2 =

(
A1 0
0 A2

)
then θ1,QA1⊕A2

(z) = θ1,QA1
(z)θ1,QA2

(z). In particular, if θ1,QA1
(z) ∈M k

2
(SL2(Z), ϑtr)

and θ1,QA2
(z) ∈ M l

2
(SL2(Z), ϑtr), then θ1,QA1⊕A2

(z) ∈ M k+l
2

(SL2(Z), ϑtr). This

shows that it is enough to consider k = 8. Assume that we can find A ∈ SP8 with
det(A) = 1. Then Al ≡ 0 mod NA if and only if l ≡ 0 mod NA and Corollary 3.0.3
gives

θ1,QA(−z−1) = z4θ1,QA(z) that is [θ1,QA|12S] = θ1,QA .

From the definition of θ1,QA it is immediate that θ1,QA(z + 1) = θ1,QA(z) (see the
remarks after Definition 3.0.1). Therefore, since T and S generate SL2(Z), we
deduce θ1,QA ∈M4(SL2(Z), ϑtr) in this case. An example of such a matrix is given
by

A =



2 1 0 0 0 0 0 0
1 2 1 0 0 0 0 0
0 1 2 1 0 0 0 0
0 0 1 2 1 0 0 0
0 0 0 1 2 1 0 0
0 0 0 0 1 2 2 0
0 0 0 0 0 2 4 1
0 0 0 0 0 0 1 2


Writing fr for the principal minor of size r × r, we have f1 = 2, f2 = 3, f3 = 4,
f4 = 5, f5 = 6, f6 = 7 and finally f7 = 4f6−4f5 = 4 and det(A) = f8 = 2f7−f6 =
1. Note that all the principal minors are positive, and consequently A is positive
definite. Therefore, θ1,QA ∈M4(SL2(Z), ϑtr) as desired.20 �

Remark 3.0.4. Let A be a symmetric matrix of size k, with k odd. Suppose that
A has integer entries, which are even on the diagonal. We claim that det(A) is
even. Reducing modulo 2, B := A is an antisymmetric matrix of odd size k, that
is Bt = −B. We need to see det(B) = 0 in this case. Let X be the generic
antisymmetric matrix of odd size k. To describe it, we introduce variables xi,j for
every pair 1 ≤ i < j ≤ k. Then X is the antisymmetric matrix of size k with
entries in the polynomial ring Z[xi,j], and such that the entry of X at row i and
column j equals xi,j (for i < j). Since X t = −X we deduce

det(X) = det(X t) = det(−X) = (−1)k det(X) = − det(X)

20Observe that, for such an A, necessarily θ1,QA
= E4, since M4(SL2(Z), ϑtr) = CE4.
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which implies det(X) = 0 (since the ring Z[xi,j] does not have characteristic 2).
Now consider the ring homomorphism f : Z[xi,j] → Z/2Z that agrees with re-
duction mod 2 on Z and sends the indeterminate xi,j to Bi,j, the entry at row i
and column j of B. Then, since the determinant is a polynomial on the entries,
det(B) = f(det(X)) = 0, as desired.

Note the following consequence of the above: if A is a symmetric matrix of even
size, with integer entries which are even on the diagonal, and | det(A)| = 1, then
A−1 has even entries on the diagonal. The reason is that the entry of A−1 at row
i and column j is given by det(A)−1(−1)i+jCj,i, where Cj,i is the determinant of
the matrix that results from A after removing row j and column i. In particular,
when i = j this is a symmetric matrix of odd size with even entries in the diagonal,
and we can apply the paragraph above to conclude that Ci,i is even. This can be
applied to A ∈ SP8k such that det(A) = 1, deducing that NA = 1 in this case.

Let us define
G = {r mod NA : Ar ≡ 0 mod NA}.

Lemma 3.0.5. G is a finite abelian group with

]G = det(A).

Proof. The group structure (with respect to addition) is obvious. Further, we note
that the fundamental parallelogram given by A · [0, 1]k has volume det(A) and has
integral vertices. Thus ](A · [0, 1]k ∩Zk) = det(A). On the other hand we see that
the matrix N−1

A A maps [0, N ]k to A · [0, 1]k. Furthermore vectors r ∈ [0, NA]k with
Ar ≡ 0 mod NA are precisely those that map to integral elements of A · [0, 1]k.
Thus the count above concludes the argument. �

Example 3.0.6. If A = diag(a1, . . . , ak) , then G = Z/a1Z⊕ . . .⊕ Z/akZ.

Note that the (symmetric) bilinear form (x,y)A = xtAy is non-degenerate.
Therefore, every character of G is given by

r 7→ ψ(r, l) = e(
1

N2
A

ltAr)

for some l ∈ G. We have symmetry ψ(r, l) = ψ(l, r) and orthogonality∑
l∈G

ψ(r, l) =

{
det(A) if r ≡ 0 mod NA,

0 else.

We now want to compute the transformation behavior of θPl,QA(z, r) for general
γ ∈ SL2(Z). This is of course possible since we understand what T and S do
(which generate SL2(Z)), but the computation is cumbersome to carry out in
general. Suppose

γ =

(
a b
c d

)
∈ SL2(Z).
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If d = 0, then γ = ±T aS and everything is easy. Thus we assume d > 0. (If d < 0
we can work with −γ instead. The computation uses a neat trick. We start by
considering

γ′ = γS =

(
b −a
d −c

)
.

Note that
dγ′z = b− (dz − c)−1.

Thus we can write

θPl,QA(γ′z, r) = N−lA
∑

m≡r mod NA

Pl(Bm)e

(
1

2N2
A

A[m]

(
b

d
− 1

d(dz − c)

))
= N−lA

∑
g mod dNA,
g≡r mod NA

e

(
bA[g]

2dN2
A

)
·

∑
m≡g mod dNA

Pl(Bm)e

(
dA[m]

2(dNA)2
· −1

dz − c

)

= d
l
2

∑
g mod dNA,
g≡r mod NA

e

(
bA[g]

2dN2
A

)
· θPl,QdA

(
−1

dz − c
,g

)
.

By Corollary 3.0.3 we have

θPl,QdA

(
−1

dz − c
,g

)
= d

l
2

(i(c− dz))
k
2

+l

il det(dA)
1
2

∑
l mod dNA,
Al≡0 mod NA

ψ(g, l)θPl,QdA(dz − c, l).

Note that det(dA) = dk det(A) and cA[m] ≡ cA[l] mod 2dN2
A. Thus we get

θPl,QA(γ′z, r) = N−lA
(i(c− dz))

k
2

+l

ild
k
2 det(A)

1
2

∑
l mod dNA,
Al≡0 mod NA

ϕ(r, l)·
∑

m≡l mod dNA

Pl(Bm)e

(
A[m]

2N2
A

z

)
,

where

ϕ(r, l) =
∑

g mod dNA,
g≡r mod NA

e

(
bA[g] + 2adltAg + acdA[g]

2dN2
A

)
.

We claim that ϕ(r, l) depends only on l mod NA (instead of dNA). Indeed we first
change g to g + cl and observe that

ϕ(r, l) = e

(
2altAr− acA[l]

2N2
A

)
︸ ︷︷ ︸

e

(
−acA[l]

2N2
A

)
ψ(ar,l)

ϕ(r− cl, 0). (60)

Thus we can write

θPl,QA(γ′z, r) = i−ld−
k
2 det(A)−

1
2 (i(c− dz))

k
2

+l ·
∑
h′∈G

ϕ(r,h′)θPl,QA(z; h′).
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Now we recall that γz = γ′(−1/z). Thus

θPl,QA(γz, r) = θPl,QA(γ′(−1/z), r)

= i−ld−
k
2 det(A)−

1
2 (
i

z
(cz + d))

k
2

+l ·
∑
h′∈G

ϕ(r,h′)θPl,QA(−1

z
; h′).

We can apply Corollary 3.0.3 again to the right hand side. This gives

θPl,QA(γz, r) = i−2ld−
k
2 det(A)−1(cz + d)

k
2

+d ·
∑
l∈G

Φ(r, l)θPl,QA(z; l),

where

Φ(r, l) =
∑
h′∈G

ϕ(r,h′) · ψ(h′, l).

Note that in order to identify the co-cycle we used that21

(
i

z
(cz + d))

k
2

+l · (−iz)
k
2

+l = (cz + d)
k
2

+l.

Our remaining task is to analyze Φ(r, l). To do so we assume that NA | c
(i.e. γ ∈ Γ0(NA)). This allows us to conclude that for Al ≡ 0 mod NA we have
A[l] ≡ 0 mod 2NA. Inserting this in (60) we get

ϕ(r, l) = ψ(ar, l)ϕ(r, 0).

The point is that we can use orthogonality of characters to compute

Φ(r, l) =
∑
h′∈G

ϕ(r,h′) · ψ(h′, l)

= ϕ(r, 0)
∑
h′∈G

ψ(ar,h′) · ψ(h′, l) =

{
ϕ(r, 0) det(A) if l ≡ −ah mod NA,

0 else.

Before we perform the last steps let us state what we are aiming to prove:

Proposition 3.0.7. For γ =

(
a b
c d

)
∈ Γ0(NA) with d > 0 and d ≡ 1 mod 2 we

have

θPl,Qa(γz, r) = G(c, d) · e
(
abA[r]

2N2
A

)
· (cz + d)

k
2

+l · θPl,QA(z, a · r),

where

G(c, d) = d−
k
2

∑
x mod d

e

(
−2c

A[x]

d

)
.

21This is checked by recalling that d > 0 and considering the distinct cases c < 0, c = 0 and
c > 0.
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Proof. So far we have obtained

θPl,QA(γz, r) = ϕ(r, 0)d−
k
2 · (cz + d)

k
2

+l · i2lθPl,QA(z,−ar)︸ ︷︷ ︸
=θPl,QA (z,ar)

.

Recall that

ϕ(r, 0) =
∑

g mod dNA,
g≡r mod NA

e

(
bA[g]

2dN2
A

)
.

Since ad = 1 + bc ≡ 1 mod NA we can write g = adr + xNA for x mod d. We
obtain

ϕ(r, 0) = e

(
a2bdA[r]

2N2
A

) ∑
x mod d

e(
bA[x]

2d
) = e

(
abA[r]

2N2
A

) ∑
x mod d

e(−2cA[x]

d
).

In the last step we have used the assumption that d ≡ 1 mod 2 in order to make
the change of variables x to 2cx. �

Essentially the last task is to evaluate the Gauß sums G(c, d). We first treat the
one dimensional case. To do se we define the Legendre symbol by(

n

p

)
=

{
1 if n ≡ y2 mod p,

−1 else
(61)

for odd primes p and (n, p) = 1. This is extended to all d ≡ 1 mod 2 and (n, d) = 1
by (n

d

)
=

(
n

p1

)r1
· · ·
(
n

ps

)rs
,

where d = pr11 · · · prss is the prime factorization of d. This is the Jacobi-symbol.

Lemma 3.0.8. For d ∈ N with d ≡ 1 mod 2 and for c with (c, d) = 1 we have

g(c, d) :=
∑

x mod d

e(c
x2

d
) =

( c
d

)
εd
√
d,

where

εd =

(
−1

d

) 1
2

=

{
1 if d ≡ 1 mod 4,

i if d ≡ −1 mod 4.

Proof. We first execute several reduction steps.
Suppose that d = qr2 where q is square-free. Then we can write x mod d as

x = u+ qrv where u mod qr and v mod r. We obtain

g(c, d) =
∑

u mod qr

e

(
cu2

d

) ∑
v mod r

e

(
2cuv

r

)
.
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By character orthogonality we can execute the v-sum and obtain

g(c, d) = r
∑

u mod qr,
u≡0 mod r

e

(
cu2

d

)
= r · g(c, q).

Thus we can restrict to square-free d.
For d square-free we have

]{x mod d : x2 ≡ y mod d} =
∏
p|d

(
1 +

(
y

p

))
=
∑
q|d

(
y

q

)
.

Inserting this into the Gauß sum yields

g(c, d) =
∑
q|d

∑
y mod d

(
y

q

)
e
(cy
d

)
.

By character orthogonality the inner sum vanishes unless q = d. So that

g(c, d) =
∑

y mod d

(y
d

)
e(
cy

d
) =

( c
d

)
g(1, d).

Next suppose d = q1q2 with (q1, q2) = 1 and square-free. Then, using the Chinese
Remainder Theorem we can write

Z/dZ ∼= Z/q1Z× Z/q2Z.
This gives

g(1, d) =
∑

x mod q1

∑
y mod q2

e(
(q2x+ q1y)2

d
) = g(q2, q1) · g(q1, q2).

Note that by quadratic reciprocity we have22(
q1

q2

)(
q2

q1

)
= (−1)(q1−1)(q2−1)/4 =

εq1q2
εq1 · εq2

.

Thus it remains to be seen that g(1, p) = εp ·
√
p, where p is prime.23

We give an argument due to Schur (1921). Define the matrix

B =

(
e(
nk

p
)

)
0≤n,k≤p−1

.

22Here it is important that q1 and q2 are both positive and odd. Note that a standard proof
of this actually uses the sign of the Gauß sum that we are trying to compute. But there are
other arguments, so that our proof is not cyclic. For example one can Artins general Reciprocity
Theorem to derive quadratic reciprocity.

23To see that |g(p, 1)| = √p is relatively easy. Indeed we can simply compute

|g(1, p)|2 =
∑

x,y mod p

e(
(x− y)(x+ y)

p
) =

∑
x mod p

e(x2/p)
∑

y mod p

e(2xy/p).

Since p is odd the y-sum vanishes unless x = 0. But for x = 0 it contributes p and we are done.
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Of course we have

Tr(B) = g(1, p) = εp ·
√
p.

And we want to determine the sign εp. By character orthogonality we compute

B2 =

(
p−1∑
v=0

e(
v(n+ k)

p
)

)
0≤n,k≤p−1

=


p 0 · · · 0
0 0 · · · p
...

... . .
. ...

0 p · · · 0

 .

In particular B4 = p2 · 1p. Thus the fourth power of an eigenvalues of B must be
p2. Thus we write the eigenvalues as λv ·

√
p with λ4

v = 1. Put mr = ]{v : λv = ir}.
Then we must have

εp = λ0 + · · ·+ λp−1 = m0 −m2 + i · (m1 −m3).

The eigenvalues of B2 are ±p and it is easy to compute the dimension of the
respective eigenspaces. This gives the constraints

m0 +m2 =
p+ 1

2
and m1 +m3 =

p− 1

2
.

Since we already know that |εp| = 1 we are left with two cases. First, m0 = m2

and m1 − m3 = ±1. In this case it easy to see that p ≡ −1 mod 4. Second,
m0 −m2 = ±1 and m1 = m3. In this case p ≡ 1 mod 4. So far we have seen that

εp = ±1 ·

{
1 if p ≡ 1 mod 4,

i if p ≡ −1 mod 4.

We still have to pin down the remaining sign, which turns out to be quite com-

plicated. We claim that det(B) = i(
p
2)p

p
2 . With this at hand we can proceed as

follows. Indeed we gain the new identity

im1+2m2+3m3pm0+m1+m2+m3 = det(B) = i(
p
2)p

p
2 .

Looking at the i powers we find that

m1 + 2m2 + 3m3 ≡ 2m2 +m1 −m3 ≡
p(p− 1)

2
mod 4

Suppose we have p ≡ 1 mod 4. Recall that in this case we already know that
m0 −m2 = ±1 and m1 = m3. We compute

±1 = m0−m2 = m0+m2−2m2 =
p+ 1

2
−2m2−m1+m3 ≡

p+ 1

2
−p(p− 1)

2
mod 4.

Since we have p ≡ 1 mod 4 we find that ±1 ≡ 1 mod 4. This determines the sign.
The case of p ≡ 3 mod 4 is similar and we omit it.
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However we should still compute the determinant. Since B is a Vandermonde
matrix we have

det(B) =
∏

0≤n<k≤p−1

(e(
k

p
)− e(n

p
)) =

∏
0≤n<k≤p−1

e(
k + n

2p
)(e(

k − n
2p

)− e(−k − n
2p

))

= i(
p
2) ·

∏
0≤n<k≤p−1

e(
k + n

2p
) ·

∏
0≤n<k≤p−1

(2 sin(
π(k − n)

p
)).

The first product is easily computed to be∏
0≤n<k≤p−1

e(
k + n

2p
) = i(p−1)2

= 1.

The second product is positive. Thus we find that det(B) = i(
p
2) ·K for something

positive. But we already know that C = | det(B)|) = p
p
2 . This concludes the

proof. �

We are now ready to compute the multi-dimensional version:

Lemma 3.0.9. Suppose d ∈ N with (d, 2c det(A)) = 1. Then we have

G(c, d) =

(
det(A)

d

)(
εd

(
2c

d

))k
.

Proof. Since d is odd we find an integral matrix V such that

V tAV ≡M mod d

for M = diag(a1, . . . , ak). (This follows from the exercise below.) Note that we
still have (det(V ), d) = 1. At this point we change variables x to V y in the sum
defining G(c, d). Note that we have

A[x] ≡M [y] ≡
k∑
i=1

aiy
2
i mod d.

We get

G(c, d) = d−
k
2

k∏
i=1

g(−2cai, d).

We are done after inserting the evaluation of the one dimensional Gauß sums
obtained above. Note that we have m1 · · ·mk ≡ det(A) det(V )2 mod d. �

Exercise 2, Sheet 6: Let A ∈ Matk×k(Z) be a symmetric matrix and let d be an
odd integer. Show that A can be diagonalized modulo d, i.e. there exists a matrix
M ∈ GLk(Z/dZ) such that M tAM is congruent to a diagonal matrix modulo d.
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Solution. Write d =
∏

p p
ip . The Chinese remainder theorem says that

Z/dZ '
∏
p

Z/pipZ

From this isomorphism we obtain

Mk(Z/dZ) '
∏
p

Mk(Z/pipZ)

and looking at the group of units

GLk(Z/dZ) = (Mk(Z/dZ))× '
∏
p

(
Mk(Z/pipZ)

)×
=
∏
p

GLk(Z/pip)

These observations reduce the problem to the case d = pn for some n ≥ 1,
so that we work with matrices in the ring Z/pnZ. Consider a symmetric matrix
A ∈Mk(Z/pnZ), which we can assume to be nonzero. Let r := min1≤i,j≤k(vp(Ai,j))
be the minimal valuation of all the entries of A. If vp(Ai,i) = r for some 1 ≤ i ≤ k,
we can swap rows and columns to assume vp(A1,1) = r. Otherwise, after swapping
some pair of rows and columns we can assume that vp(A1,j0) = r for some j0 ≥ 2,
but that vp(Ai,i) > r for all 1 ≤ i ≤ k. Then, letting P = Id +Ej0,1 ∈ SLk(Z/pnZ)
we see that (P tAP )1,1 = A1,1 +2A1,j0 +Aj0,j0 , and then vp(A1,1 +2A1,j0 +Aj0,j0)24 =
vp(A1,j0) = min1≤i,j≤k(vp(Ai,j)).

Now we can assume that vp(Ai,j) ≥ r = vp(A1,1) for all 1 ≤ i, j ≤ r. Therefore,
for any j ≥ 2 there exists cj ∈ Z/pkZ such that A1,j = cjA1,1. Considering

P = Id−
∑k

j=2 cjE1,j ∈ SLk(Z/pnZ), we observe that

P tAP =

(
A1,1 0

0 B

)
for a symmetric matrix B ∈ Mk−1(Z/pnZ). Proceeding inductively, we can find
P ∈ SLk(Z/pnZ) such that P tAP is diagonal, as desired. Note that the algorithm
actually gives P tAP = diag(d1, . . . , dn) where di | di+1 for 1 ≤ i ≤ k − 1. �

Remark 3.0.10. The conclusion of the exercise does not hold if d is even. For a
counterexample, we let A ∈ Mk(Z/dZ) be a nonzero symmetric matrix with all
diagonal entries equal to 0, and the rest of the entries satisfying 2Ai,j = 0 for all
1 ≤ i, j ≤ k. Then, we see that

xtAx = 0 for all x ∈ (Z/dZ)k

As a consequence, for any P ∈ GLk(Z/dZ), the diagonal entries of P tAP are all
zero. If this matrix was diagonal, it would be identically zero, and then A would
also be identically zero, contrary to hypothesis.

24We use that p is odd to guarantee that vp(2) = 0.
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We extend the Jacobi Symbol from d > 0 odd to all odd d by requiring( c
d

)
=

c

|c|

(
c

−d

)
if c 6= 0.

We also set (
0

d

)
=

{
1 if d = ±1,

0 else.

We can now combine everything:

Proposition 3.0.11. Let A ∈ SPk and let Pl be a harmonic polynomial. Suppose

that γ =

(
a b
c d

)
∈ SL2(Z) with NA | c and d ≡ 1 mod 2. Then for any r ∈ G we

have

[θPl,QA(·, r)| k
2

+lγ](z) = e

(
abA[r]

2N2
A

)
ϑth(γ)θPl,QA(z, ar),

where

ϑth(γ) =

(
det(A)

d

)(
εd

(
2c

d

))k
.

Proof. The case c = 0 is easy. For d > 0 we can apply Proposition 3.0.7 together
with the evaluation of the Gauß sum given in Lemma 3.0.9. The case d < 0 is ok
due to our modification of the Jacobi symbol. �

Remark 3.0.12. It can be seen that the (generalized) theta functions θPl,QA(z, r)
for r ∈ G are modular forms for the principal congruence subgroup

Γ(4NA) = ker[SL2(Z)→ SL2(Z/4NAZ)].

Indeed for γ =

(
a b
c d

)
∈ Γ(4NA) the transformation behavior simplifies to

[θPl,QA(·, r)| k
2

+lγ](z) =

(
2c

d

)k
θPl,QA(z, r).

Furthermore these are cusp-forms as soon as Pl is not constant.

We are mostly interested in the case of θPl,QA(z) = θPl,QA(z,0).

Theorem 3.0.13. Let A ∈ SPk and Pl be a harmonic polynomial. Then

θPl,QA(z) ∈M k
2

+l(Γ0(2NA), ϑth).

If l > 0, then θPl,QA(z) is a cusp form.

Proof. The transformation behavior follows directly from our earlier considera-
tions. (Note that since (d, c) = 1 it must be odd.) It remains to check the
regularity conditions at the cusps. This is done as follows. First we note that
every cusp of Γ0(2NA) can be translated to ∞ using a matrix in SL2(Z). (This
is different from the scaling matrix, but good enough!) However, as we have seen
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above acting on θPl,QA(z) by an element of SL2(Z) gives us a linear combination
of the (generalized) theta functions θPl,QA(z, r) where r runs through G. Thus it
suffices to check that all θPl,QA(z, r) are holomorphic at infinity. Vanishing at the
cusps is similarly easy to see when l > 0. This is because Pl(0) = 0 as soon as Pl
is non-constant. �

Things simplify when k is even. Indeed in this case we have

ϑth(γ) = χDA(γ) =

(
DA

d

)
with DA = (−1)

k
2 det(A).

This is simply a character.

Theorem 3.0.14. Let A ∈ SPk for even k and let Pl be a harmonic polynomial
of even degree l. Suppose that NA > 1. Then

θPl,QA(z) ∈M k
2

+l(Γ0(NA), χDA).

Furthermore, if l > 0, then θPl,QA(z) is a cusp form.

Proof. Essentially everything is clear except for the transformation behavior in the
case when

γ =

(
a b
c d

)
∈ Γ0(NA)

with d even. If such a γ exist, then 2 - NA and 2 - det(A). In this case one sees
that

DA = (−1)
k
2 det(A) ≡ 1 mod 4.

In particular χDA(d) depends only on d mod NA. Thus we can do the following
trick. Let

γ′ = γT =

(
a a+ b
c c+ d

)
.

Our transformation law applies to this matrix. Indeed we get

[θPl,QA| k
2

+lγ](z) = [θPl,QA| k
2

+lγ
′](z−1) = χDA(d+c)θPl,QA(z−1) = χDA(d)θPl,QA(z).

�

Remark 3.0.15. Note that we can ask if the statement of the theorem above remains
true when A ∈ SPk and det(A) = NA = 1. In this case k must be even and we can
ask about the transformation behavior of θPl,QA(z) with respect to SL2(Z). For
this we need to consider the action of matrices with vanishing lower right entry
(for example S). This can be established by means of Corollary 3.0.3.

Recall that a Dirichlet character χ : Z → C× modulo N arises as follows. We
start with a character χ : (Z/NZ)×, also denoted by χ, in the usual sense. Then
we put

χ(k) =

{
χ(k mod N) if (k,N) = 1,

0 else.
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To a Dirichlet character modulo N we associate the Gauß sum

τ(χ) =
∑

x mod N

χ(x)e
( x
N

)
.

An example of a Dirichlet character modulo 4 is

χ−4(d) =


1 if d ≡ 1 mod 4,

−1 if d ≡ 3 mod 4,

0 if 2 | d.
(62)

Exercise 1, Sheet 6: Let χ be a non-trivial Dirichlet character modulo p, where
p is an odd prime. Write χ(−1) = (−1)ρ for ρ ∈ {0, 1} and

θχ(z) =
∑
n∈Z

χ(n)nρe(n2z)

a) Show that

θχ

(
− 1

2pz

)
= i−ρ

τ(χ)
√
p

(−iz)ρ+ 1
2 θχ−1

(
z

2p

)
(63)

b) Find M ∈ N (depending on p) and a multiplier system ϑ such that θχ ∈
Mρ+ 1

2
(Γ0(M), ϑ).

Solution. We will apply Corollary 3.0.3 with A = 2p, NA = 4p and Pρ = xρ, where
ρ ∈ {0, 1}. From Definition 3.0.1 we have

θxρ,QA(z, 4k) =
∑
n∈Z

(√
2p

(
n+

4k

4p

))ρ
e

(
1

2
2p

(
n+

4k

4p

)2

z

)

=

(
2

p

)ρ/2∑
n∈Z

(pn+ k)ρe

(
(pn+ k)2 z

p

)
.

It follows that

θχ(z) =
(p

2

)ρ/2 ∑
k mod p

χ(k)θxρ,QA(pz, 4k) (64)

Similarly, we have

θxρ,QA(z, 2k) =
∑
n∈Z

(√
2p

(
n+

2k

4p

))ρ
e

(
1

2
2p

(
n+

2k

4p

)2

z

)

= (2p)−ρ/2
∑
n∈Z

(2pn+ k)ρe

(
(2pn+ k)2 z

4p

)
and we also have the expression

θχ(z) = (2p)ρ/2
∑

k mod 2p

χ(k)θxρ,QA(4pz, 2k) (65)
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From Corollary 3.0.3 we obtain the identity

θxρ,QA(−z−1, 4k) =
i−ρ(−iz)

1
2

+ρ

√
2p

∑
l mod 2p

e

(
4k2p2l

16p2

)
θxρ,QA(z, 2l)

=
i−ρ(−iz)

1
2

+ρ

√
2p

∑
l mod 2p

e

(
kl

p

)
θxρ,QA(z, 2l).

Applying the identity for any k modulo p and using the expression (64) we obtain

θχ

(
− 1

2pz

)
=
(p

2

)ρ/2 ∑
k mod p

χ(k)θxρ,QA

(
− 1

2z
, 4k

)

=
(p

2

)ρ/2 i−ρ(−2iz)
1
2

+ρ

√
2p

∑
k mod p

∑
l mod 2p

χ(k)e

(
kl

p

)
θxρ,QA(2z, 2l)

=
(p

2

)ρ/2 i−ρ(−2iz)
1
2

+ρ

√
2p

∑
l mod 2p

( ∑
k mod p

χ(k)e

(
kl

p

))
θxρ,QA(2z, 2l).

If (l, p) = 1, we can change variables, writing k = lx in the inner sum, to obtain∑
k mod p

χ(k)e

(
kl

p

)
= χ−1(l)τ(χ) (66)

If p divides l the inner sum is
∑

k mod p χ(k), which equals 0 since χ is primitive.

Since χ−1(l) = 0, equation (66) also holds in this case. Thus, we arrive at

θχ

(
− 1

2pz

)
=
(p

2

)ρ/2 i−ρ(−2iz)
1
2

+ρ

√
2p

τ(χ)
∑

l mod 2p

χ−1(l)θxρ,QA(2z, 2l)

=
(p

2

)ρ/2 i−ρ(−2iz)
1
2

+ρ

√
2p

τ(χ)(2p)−ρ/2θχ−1

(
z

2p

)
=
i−ρ(−iz)

1
2

+ρ

√
p

τ(χ)θχ−1

(
z

2p

)
where we used the expression (65) for χ−1 in the second line. This finishes the
proof of part a).

For part b) we will apply Proposition 3.0.7 using the expression (64). Let γ ∈

Γ0(4p2), which we can write as γ =

(
a b

4p2c d

)
. We see that(

p 0
0 1

)(
a b

4p2c d

)
=

(
a pb

4pc d

)(
p 0
0 1

)
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Letting γ1 :=

(
a pb

4pc d

)
, and using jγ(z) = jγ1(pz) we obtain formally

[θxρ,QA(p·, 4k)| 1
2

+ργ](z) = jγ(z)−
1
2

+ρjγ1(pz)
1
2

+ρ[θxρ,QA(·, 4k)| 1
2

+ργ1](pz)

= [θxρ,QA(·, 4k)| 1
2

+ργ1](pz)

Applying Proposition 3.0.7 to θxρ,QA(·, 4k) and γ1 ∈ Γ0(4p) we arrive at

[θxρ,QA(p·, 4k)| 1
2

+ργ](z) = [θxρ,QA(·, 4k)| 1
2

+ργ1](pz)

= e

(
apb2p(4k)2

32p2

)
θth(γ1)θxρ,QA(pz, 4ak) (67)

= θth(γ1)θxρ,QA(pz, 4ak).

Using expression (64) and the fact that (a, p) = 1, we obtain

[θχ(·)| 1
2

+ργ](z) =
(p

2

)ρ/2 ∑
k mod p

χ(k)θth(γ1)θxρ,QA(pz, 4ak) = θth(γ1)χ−1(a)θχ(z).

Therefore, θχ ∈M 1
2

+ρ(Γ0(4p2), ϑ) where the multiplier system ϑ is defined as

ϑ(γ) := θth(γ1)χ−1(a)

for γ ∈ Γ0(4p2) and γ1 and a defined as above. �

Remark 3.0.16. Let Q8 be the quadratic form

Q8(x) =
1

2
A[x] =

1

2

8∑
r=1

x2
r +

1

2

(
8∑
r=1

xr

)2

− x1x2 − x2x8.

Then there is a harmonic polynomial P8 such that

θP8,Q8(z) = ∆(z).

Proof. For now take P to be some harmonic polynomial. If deg(P ) = 0, in other
words P = c, then

θP,Q8(z) = cE4(z).

On the other hand if deg(P ) > 0, then θP,Q8(z) is cuspidal. In particular, if 0 <
deg(P ) < 8, then θP,Q8(z) = 0 since there are no cusp forms of the corresponding
weight and level. Furthermore, if deg(P ) = 8 then θP,Q8(z) ∈ C∆. Thus it suffices
to find P for which θP,Q8(z) 6= 0.

Next let us note the following triviality

θP,Q8(z) =
∑
n≥0

BP (n)e(nz) for Bp(n) =
∑
x∈Z8,

Q8(x)=n

P (Bx).

This of course implies

θP+P̃ ,Q8
(z) = θP,Q8(z) + θP̃ ,Q8

(z)
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On the other hand, our discussion above implies

Bp(n) =

{
240 · c · σ3(n) if P = c,

0 if 1 ≤ deg(P ) < 8.

We make the Ansatz

P8(Bx) = P̃8(u)[Q8(α) ·Q8(x)]4 for u =
xtAQ8α

2
√
Q8(x)Q8(α)

and some α ∈ Z8 to be specified soon. Here P̃8 is a certain even Polynomial of
degree 8. We can write

P̃8(u) = u8 +
7∑
ρ=1

cρHρ(u)− w8,

for Legendre-like-Polynomials Hρ of degree ρ.25 Since P8 is orthogonal to the
constant function one determines w8 = 2−7.

Using our remarks above we compute

BP8(n) = (Q8(α) · n)4
∑

Q8(x)=n

(u8 − w8)

= 2−8
∑

Q8(x)=n

[xtAQ8α]8 − 2−7 · 240 · σ3(n)(Q8(α) · n)8.

To see that our generalised theta function does not vanish we only need to look at
the first Fourier coefficient. We now choose α such that Q8(α) = 1. Thus we get

28B8(1) =
∑

Q8(x)=1

[
xtAQ8α

]8
︸ ︷︷ ︸

≥2·(2Q8(α))8

−25 · 15 ≥ 29 − 25 · 15 = 25(16− 15) = 25 > 0.

In the first step we used that the x sum includes x = α,−α and we drop all
the rest by positivity. Thus we have seen that B8(1) ≥ 1

8
which implies non-

vanishing.26 �

25If we were working in 3 variables these would really be just Legendre polynomials. However,
in our case they are determined (up to constant) by their property of being polynomials of degree
ρ and by the differential equation

(1− u2)H ′′ρ − 7uH ′ρ + ρ(6 + ρ)Hρ = 0.

26Working more precisely one can get B8(1) = 9
16 on the nose.
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4. Satz II: Quadratic Forms

In this section we illustrate basic applications of modular forms to quadratic
forms via theta functions. Here we are interested in the specific case of positive
definite quadratic forms with integral coefficients:

Q(x) =
∑
i<j

aijxixj +
1

2

∑
i

aiix
2
i =

1

2
x>Ax =

1

2
A[x]. (68)

In particular A is a symmetric positive definite matrix with integral entries and
even diagonal (i.e. A ∈ SPk). Let k be the rank of Q (i.e. A ∈ Mk×k(Z)). Then
we are interested in studying problems surrounding the diophantine equation

Q(m) = n for m ∈ Zk and n ∈ N.

For k = 2 this can be approached using algebraic number theory. On the other
hand, if k is sufficiently large analytic tools such as the circle method turn out
to be very powerful. Another possibility, which we will pursue here, relies on the
modularity of theta functions.

The maybe most famous example is the proof of Jacobi’s four square theorem
using modular forms. Set

r4(n) = ]{x ∈ Z4 : n = x2
1 + x2

2 + x2
3 + x2

4}.

Then ∑
n≥0

r4(n)e(nz) = θ1,QA(z),

where A = diag(2, 2, 2, 2). In particular NA = 4 so that

θ1,QA(z) ∈M2(Γ0(4), ϑtr).

We have two candidates of modular forms in M2(Γ0(4), ϑtr):

E2,2(z) = E2(z)− 2E2(2z) ∈M2(Γ0(2), ϑtr) ⊆M2(Γ0(4), ϑtr) and

E2,4(z) = E2(z)− 4E2(4z) ∈M2(Γ0(4), ϑtr).

Since we know the Fourier expansion of E2 at∞ (see (28)) we can write down the
expansions of E2,a with a = 2, 4 at ∞:

E2,a = (1− a)− 24
∑
n∈N

[
σ1(n)− δa|n · a · σ1(n/a)

]
e(nz).

We see that they are linearly independent so that

2 ≤ dimM2(Γ0(4), ϑtr).

We claim that the dimension actually equals 2. To show this we derive the following
general result.
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Lemma 4.0.1. Suppose Γ ⊆ SL2(Z) is of finite index, then

dimMk(Γ, ϑtr) ≤
k

12
· [SL2(Z) : Γ] + 1.

Proof. We let d = dimMk(Γ, ϑtr). Then we observe that there is f ∈ Mk(Γ, ϑtr)
with mf (∞) ≥ d − 1. (This is a problem in linear algebra, since we can build
linear combinations eliminating at least the first d − 1 Fourier coefficients.) Now
write µ = [SL2(Z) : Γ] and find representatives

SL2(Z) =

µ⋃
i=1

Γ · γi.

This allows us to construct the function

g(z) =

µ∏
i=1

[f |kγi](z) ∈Mk·µ(SL2(Z), ϑtr).

By Theorem 2.4.1 we conclude that

d− 1 ≤ mf (∞) ≤ mg(∞) ≤ kµ

12
.

�

Since [SL2(Z) : Γ0(4)] = 627 we have dimM4(Γ0(4), ϑtr) ≤ 2. Thus we have seen
that

M4(Γ0(4), ϑtr) = C · E2,2 + C · E2,4.

One can even show that S4(Γ0(4), ϑtr) = {0} (Exercise) but this is not relevant
at the moment.

Exercise 1, Sheet 7: Show that S2(Γ0(4), ϑtr) = 0.

Solution. Let f ∈ S2(Γ0(4), ϑtr) and consider

g(z) :=
∏

γ∈Γ0(4)\SL2(Z)

(f |2γ) (z).

Recall that [Γ0(4) : SL2(Z)] = 6. Also, it is clear from the definitions that [(f1 ·
f2)|k+lγ] = [f1|kγ] · [f2|lγ] for k, l ∈ R and γ ∈ SL2(R). Using this remark, we let
δ ∈ SL2(Z) and observe that

g|12δ =
∏

γ∈Γ0(4)\SL2(Z)

([f |2γ]|2δ) =
∏

γ∈Γ0(4)\SL2(Z)

[f |2γδ] = g

since right multiplication by δ permutes the right cosets of Γ0(4) in SL2(Z). This
proves that g ∈M12(SL2(Z), ϑtr). Since f is a cusp form, for each γ ∈ SL2(Z) the
function f |2γ vanishes at infinity, so in fact g ∈ S12(SL2(Z), ϑtr). We now show

27One can show by writing down general systems of representatives that [SL2(Z) : Γ0(N)] =
N ·

∏
p|N (1 + p−1). This is the content of Proposition 4.1.7 below.
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that g ≡ 0.

Given γ ∈ SL2(Z), recall that stabilizer of the cusp γ∞ is Γ0(4) ∩ γU(Z)γ−1 =
γ (γ−1Γ0(4)γ ∩ U(Z)) γ−1. Since Γ0(4) contains Γ(4), which is normal of finite
index in SL2(Z), we deduce that

γ−1Γ0(4)γ ∩ U(Z) = 〈T dγ〉
for a unique positive integer dγ, where T = ( 1 1

0 1 ). It follows that [f |2γ](z) has
period dγ, since γT dγγ−1 ∈ Γ0(4) and therefore

[f |2γ]|2T dγ = [f |2(γT dγγ−1)]|2γ = f |2γ.
Since f |2γ is holomorphic, zero at infinity and has period dγ, we can write

[f |2γ](z) = qd
−1
γ hγ

(
qd
−1
γ

)
for a holomorphic function hγ on the unit disc, where q := e(z) and qr := e(rz)
for any real r. Therefore, we deduce

g(z) = q
∑
γ∈Γ0(4)\SL2(Z)

1
dγ

∏
γ∈Γ0(4)\SL2(Z)

hγ(q
1
dγ ).

On the other hand, we know that g(z) is holomorphic on q. After observing that
all dγ are positive and that dId = 1 we deduce that g has a zero of order at least
2 at infinity. Since S12(SL2(Z), ϑtr) is spanned by ∆, which has a simple zero at
infinity, we conclude that g ≡ 0. By the identity principle, we deduce that f ≡ 0,
as desired. �

Remark 4.0.2. Another way to do the exercise is as follows. First, recall that

M2(Γ0(4), ϑtr) = CE2,2 + CE2,4

where E2,N(z) := E2(z) − NE2(Nz). The Eisenstein series E2 has an expansion
at infinity

E2(z) = 1− 24
∞∑
n=1

σ1(n)e(nz).

It is not a modular form, but satisfies instead

E2

(
az + b

cz + d

)
= (cz + d)2E2(z) +

12c

2πi
(cz + d)

for ad − bc = 1, a, b, c, d ∈ Z. Using this transformation law one sees that
E2,N ∈ M2(Γ0(N), ϑtr) and, in particular, E2,2, E2,4 ∈ M2(Γ0(4), ϑtr). Also, we
have expansions

E2,N(z) = 1−N − 24
∞∑
n=1

(
σ1(n)−NδN |nσ1

( n
N

)
e(nz)

)
.
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If f ∈ S2(Γ0(4), ϑtr) we can write f = aE2,2 + bE2,4. Since f is cuspidal, looking
at the constant coefficient in the expansion we deduce a = −3b. Now we look

at a = 0, which is a cusp inequivalent to ∞. Consider S :=

(
0 −1
1 0

)
. Since

f ∈ S2(Γ0(4), ϑtr), we must have [f |2S](z) → 0 when Im(z) → ∞. Using the
transformation behaviour for E2, we calculate

[NE2(N ·)|2S](z) = Nz−2E2

(
−N
z

)
= Nz−2E2

(
−1
z
N

)
= Nz−2

( z
N

)2

E2

( z
N

)
+Nz−2 12

2πi

z

N

=
1

N
E2

( z
N

)
+

12

2πiz
.

Therefore, we have

[E2,N |2S](z) = E2(z)− 1

N
E2

( z
N

)
and we obtain

[f |2S](z) = (a+ b)E2(z)− a

2
E2

(z
2

)
− b

4
E2

(z
4

)
.

Looking at the constant term of the expansion at infinity, we deduce 2a = 3b,
which together with a = −3b implies a = b = 0, so f ≡ 0 as desired.

We return to studying the representation numbers of the sum of four squares.
By looking at r4(0) = 1 and r4(1) = 8 we see that

θ1,QA(z) = −1

3
· E2,4.

Comparing coefficients in the corresponding Fourier expansions gives the following
theorem:

Theorem 4.0.3 (Jacobi’s four square theorem). We have

r4(n) = ]{x ∈ Z4 : n = x2
1 + . . .+ x2

4} = 8 · [σ1(n)− 4 · δ4|n · σ1(n/4)].

For educational purposes we can rewrite this as follows:

r4(n) = n · 82 + (−1)n

2v2(n)
·
∏
p odd

1− p−vp(n)−1

1− p−1
.

We have used that σ1(mn) =
∑

d|mn d = σ1(m)σ1(n) for (m,n) = 1 and

σ1(pk) = pk
k∑
s=0

p−s = pk · 1− p−k−1

1− p−1
.

Furthermore we have written n =
∏

p p
vp(n), thus vp(n) (the p-adic valuation of n)

is the exponent of p in the prime factor decomposition of n. After recalling that

π2

6
= ζ(2) =

∑
n∈N

n−2 =
∏
p

(1− p−2)−1
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we can further write this as

r4(n) = π2n︸︷︷︸
=δ∞(n,A)

·
(

2 + (−1)n

2v2(n)

)
︸ ︷︷ ︸

=δ2(n,A)

·
∏
p odd

1− p−vp(n)−1

1− p−1
(1− p−2)︸ ︷︷ ︸

=δp(n,A)

.

To explain this yoga we give now the proper definitions of the local densities
δ∗(n,A) and verify that they agree with the formulae given above.

We start with δ∞(n,A). For general A ∈ SPk we define

δ∞(n,A) = lim
U→{n}

Vol(Q−1
A (U))

Vol(U)
,

where the volumes are computed with respect to the Lebesgue measure and the
limit is taken over neighborhoods of {n} in R. Let us compute this for A =
diag(2, 2, 2, 2):

δ∞(n,A) = lim
ε→0

1

2ε

∫
R4

1{|x|2−n∈(−ε,ε)}(x)dx

= lim
ε→0

1

2ε

∫
R

∫ π

0

∫ π

0

∫ 2π

0

r3
1{r2−n∈(−ε,ε)}(r) sin2(θ1) sin(θ2)dθ3dθ2dθ1dr

= lim
ε→0

1

2ε
2π · 2 · π

2
· 1

4
[(n+ ε)2 − (n− ε)2] = π2 · n.

This agrees with the factor found in the representation of r4(n) given above. The
computations suggests that in general we have

δ∞(n,A) =
(2π)

k
2

Γ(k/2)
det(A)−

1
2n

k
2
−1. (69)

Recall that Zp = lim←−k Z/p
kZ equipped with the pro-finite topology. The quotient

field Qp is a locally compact field and thus features a Haar measure (with respect
to addition). Thus we can define

δp(n,A) = lim
U→{n}

Vol(Q−1
A (U))

Vol(U)
,

where U runs over a a system of neighborhoods of n in Qp and the volume is taken
with respect to the Haar measure. Using that Vol(prZp) = p−r and that n+ prZp
are open (compact) neighborhoods of n it is easy to see that one can rewrite this
as

lim
r→∞

1

pr(k−1)
]{x ∈ (Z/prZ)k : QA(x) ≡ n mod pr}. (70)
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We claim that this agrees with the factors we have found for A = diag(2, 2, 2, 2).
Indeed for odd p we can compute

1

p3r
]{x ∈ (Z/prZ)k : QA(x) ≡ n mod pr}

= p−4r
∑

d mod pr

∑
x1,x2,x3,x4 mod pr

e(
d

pr
(x2

1 + x2
2 + x2

3 + x2
4 − n))

= p−4r
∑
a|pr

∑
d mod pr,
(p,d)=1

e(−dn
pr

)

( ∑
x mod pr

e(
d

pr
x2)

)4

)

=
∑
a|pr

a−2
∑

d mod pr,
(p,d)=1

e(−dn
pr

).

The d-sum is a so called Ramanujan sum. It evaluates to∑
d mod pr,
(p,d)=1

e(−dn
pr

) =
∑
b|(n,a)

b · µ(a/b).

where µ is the Möbius function. Recall that the Möbius function is multiplicative
and satisfies

µ(ps) =


1 if s = 0,

−1 if s = 1,

0 else.

on prime powers. In total we have

1

p3r
]{x ∈ (Z/prZ)k : QA(x) ≡ n mod pr} =

∑
a|pr

a−2
∑
b|(n,a)

b · µ(a/b).

If (n, p) = 1 it is straight forward that this evaluates to

1

p3r
]{x ∈ (Z/prZ)k : QA(x) ≡ n mod pr} = (1− p−2)

for all r ≥ 1. If (n, p) > 1, then we suppose that r ≥ vp(n) + 1. In this case we get

1

p3r
]{x ∈ (Z/prZ)k : QA(x) ≡ n mod pr} = 1 +

vp(n)∑
s=1

p−2s(ps − ps−1)− p−vp(n)−2

= 1 + p−1 − p−vp(n)−1 − p−vp(n)−2

= (1− p−vp(n)−1)(1 + p−1)

=
1− p−vp(n)−1

1− p−1
(1− p−2).
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Thus we have interpreted Jacobi’s formula for r4(n) as a product of local density
which can be defined as local volumes.

• The product
∏

p δp(n,A) converges absolutely as soon as k ≥ 4. The situ-
ation for k = 2, 3 is more tricky.
• For general integral quadratic forms Q = QA one would hope for an as-

ymptotic

rQ(n) = δ∞(n,A) ·
∏
p

δp(n,A) · (1 + oQ(1))

to hold. Under favorable circumstances this can be shown using the circle
method and furnishes a local to global principle.

In the next subsection we will see what can be said in general. But before we
include a elementary proof of Lagrange’s four square theorem as an exercise.

Exercise 1, Sheet 1: The goal of this exercise is to give an elementary proof of
Lagrange’s four square theorem:

a) Show that for every p > 2 there is 1 ≤ m < p so that

mp = x2
1 + x2

2 + x2
3 + x2

4

with x1, x2, x3, x4 ∈ Z≥0.
b) Show that every prime p is representable as a sum of four squares (of non-

negative integers).
c) Show that every integer n can be written as a sum of four squares of non-

negative integers.

Solution. For part a), note that the subsets of Zp defined by A := {x2 | x ∈ Zp}
and B := {1−y2 | y ∈ Zp} have both cardinality p+1

2
, and therefore must intersect.

Thus x2 = −1− y2 mod p has a solution. By modifying x 7→ −x and/or y 7→ −y
if necessary, we can choose representatives with 0 ≤ x, y ≤ p−1

2
. Therefore

x2 + y2 + 1 = mp with 1 ≤ m ≤ p− 1

2

For part b) the classical argument by descent runs as follows. For a prime p > 2
as above let m ≥ 1 be the smallest positive integer such that mp is a sum of four
squares. By part a) we know 1 ≤ mp ≤ p−1

2
. The goal is to show m = 1. For the

sake of contradiction, suppose that m > 1 and consider the integers yi congruent
to xi modulo m and such that (1−m)/2 ≤ yi ≤ m/2. We have

y2
1 + y2

2 + y2
3 + y2

4 = mr

for a certain 0 ≤ r ≤ m. If r = 0, then all xi are divisible by m, which contradicts∑
x2
i = mp with p a prime strictly greater than m. Similarly, if r = m then
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yi = m/2 for all i which gives xi = m
2

(2ti + 1) for some ti ≥ 0 and therefore

mp = x2
1+x2

2+x2
3+x2

4 = m2 (2t1 + 1)2 + (2t2 + 1)2 + (2t3 + 1)2 + (2t4 + 1)2

4
= m2k

for some k ≥ 0. In this case m | p again, which is a contradiction to m > 1 and
p > m prime. Therefore, we must have 1 ≤ r ≤ m − 1. Now we use the Euler
identity

pm2r = (x2
1 + x2

2 + x2
3 + x2

4)(y2
1 + y2

2 + y2
3 + y2

4)

= (x1y1 + x2y2 + x3y3 + x4y4)2 + (x1y2 − x2y1 + x3y4 − x4y3)2

+ (x1y3 − x3y1 + x4y2 − x2y4)2 + (x1y4 − x4y1 + x2y3 − x3y2)2

=: z2
1 + z2

2 + z2
3 + z2

4 .

By the choice of yi it is clear that each z2, z3, z4 are divisible by m. To see that
m also divides z1 note that

z1 ≡ x2
1 + x2

2 + x2
3 + x2

4 ≡ 0 mod m

by hypothesis. Therefore, considering z′i = zi/m we find an expression for pr as a
sum of four squares. As 1 ≤ r < m, we have a contradiction to the minimality of m.

For part c) we simply express n as a product of primes and use part b) and the
Euler identity inductively. �

Exercise 3, Sheet 7: Let

r2(n) = #{x1, x2 ∈ Z : n = x2
1 + x2

2}.
Use the fact

E1,χ−4(z) :=
1

4
+
∞∑
n=1

∑
d|n

χ−4(d)

 e(nz) ∈M1(Γ0(4), χ−4)

from (52) to show that

r2(n) = 4

 ∑
d|n

d≡1 mod 4

1−
∑
d|n

d≡3 mod 4

1

 .

Solution. Consider the quadratic form QA associated to A :=

(
2 0
0 2

)
and form

the theta function

θ1,QA(z) =
∑
n∈Z2

e

(
1

2
A[n]z

)
=
∑
n≥0

r2(n)e(nz)

where the second equality follows from the definitions of A and r2(·). Clearly
A ∈ SPk and 4A−1 ∈ SPk. Therefore, we can apply Theorem 3.0.14, with k = 2
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and NA = 4, to deduce that θ1,QA ∈ M1(Γ0(4), χDA). Here DA = − det(A) = −4
and

χDA(γ) =

(
−4

d

)
= χ−4(d)

where γ = ( a b
4c d ) ∈ Γ0(4). Since r2(0) = 1, we observe that

g(z) := θ1,QA(z)− 4E1,χ−4(z) ∈M1(Γ0(4), χ−4)

with a zero at ∞. Since χ−4 is a quadratic character, we see

g(z)2 ∈M2(Γ0(4), θtr)

with a zero at ∞ of order at least 2. Proceeding as in exercise 1 we can consider

h(z) :=
∏

γ∈Γ0(4)\SL2(Z)

[g2|2γ] ∈M12(SL2(Z))

It follows that h has a zero of order at least 2 at ∞. Since S12(SL2(Z), ϑtr) is
spanned by ∆, with a zero of order 1 at∞, we deduce that h ≡ 0. By the identity
principle this implies g ≡ 0. That is,

∑
n≥0

r2(n)e(nz) = 1 + 4
∞∑
n=1

∑
d|n

χ−4(d)

 e(nz).

Comparing coefficients and using the definition of χ−4(·), we are done. �

Bonus Exercise: Prove the following formula

r8(m) := |{(n1, . . . , n8) ∈ Z8 : n2
1 + . . .+ n2

8 = m}| = 16
∑
d|m

(−1)m−dd3 (71)

Solution. Letting A8 := diag(2, 2, 2, 2, 2, 2, 2, 2), we recognize

θ1,Q8(z) :=
∑
n∈Z8

e

(
1

2
A8[n]z

)
=
∑
m≥0

r8(m)e(mz)

Also, recall that θ(z) :=
∑

n∈Z e(n
2z) ∈ M 1

2
(Γ0(4), ϑth), where ϑth is a multiplier

that takes values in µ4, the group of roots of unity of order dividing 4. Therefore,
ϑ4

th = ϑtr. Since we recognize that

θ1,Q8 = θ8

we deduce that θ1,Q8 ∈ M4(Γ0(4), ϑtr). Let E4 ∈ M4(SL2(Z), ϑtr) be the usual
Eisenstein series of weight 4 for SL2(Z). We claim that

M4(Γ0(4), ϑtr) = CE4 ⊕ CE4(2·)⊕ CE4(4·).
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Since E4(2·) = ι1,2(E4) and E4(4·) = ι1,4(E4), we know that these are modular
forms of weight 4 for Γ0(4). Looking at the Fourier expansion at ∞ we see

E4(z) = 1 + 240
∞∑
m=1

σ3(m)e(mz)

E4(2z) = 1 + 240
∞∑
m=1

δ2|mσ3

(m
2

)
e(mz)

E4(4z) = 1 + 240
∞∑
m=1

δ4|mσ3

(m
4

)
e(mz).

Therefore, if f = aE4 + bE4(2·) + cE4(4·), we have, for m ≥ 1

af (m;∞) = 240
(
aσ3(m) + bδ2|mσ3

(m
2

)
+ cδ4|mσ3

(m
4

))
.

In particular, if f = 0, taking m = 1 we deduce a = 0, then taking m = 2 we
deduce b = 0, and finally taking m = 4 we see c = 0. Therefore, the modular
forms E4, E4(2·) and E4(4·) are linearly independent. On the other hand, recall
from Lemma 4.0.1 that for a finite index subgroup Γ ⊂ SL2(Z) we have

dimMk(Γ, ϑtr) ≤
k

12
[SL2(Z) : Γ] + 1.

In our case, k = 4 and [SL2(Z) : Γ0(4)] = 6. Therefore, we deduce dimM4(Γ0(4), ϑtr) ≤
3. Together with the paragraph above we arrive at the conclusion that

M4(Γ0(4), ϑtr) = CE4 ⊕ CE4(2·)⊕ CE4(4·) (72)

In particular, there exist unique a, b, c ∈ C such that θ1,Q8 = aE4+bE4(2·)+cE4(4·).
Looking at (72) and taking m = 1 and m = 2, together with the equation for the
constant coefficient, we arrive at the following system

a+ b+ c = 1

240a = r8(1)

240σ3(2)a+ 240b = r8(2).

Since r8(1) = 16 and r8(2) = 4
(

8
2

)
= 112, we deduce

a =
1

15
, b = − 2

15
, c =

16

15
.

Since 240 = 15 · 16, we see from (72) that

r8(m) = 16
(
σ3(m)− 2δ2|mσ3

(m
2

)
+ 16δ4|mσ3

(m
4

))
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If m is odd, this agrees with (71). If m = 2km0 with m0 odd and k ≥ 1, we need
to prove

r8(m) = 16

∑
d|m
d even

d3 −
∑
d|m
d odd

d3

 = 16(−1+
k∑
r=1

23r)
∑
d|m0

d3 = 16(−1+
k∑
r=1

23r)σ3(m0)

When k = 1, we know that

r8(m) = 16(σ3(m)− 2σ3(m0)) = 16(σ3(2)σ3(m0)− 2σ3(m0)) = 16(−1 + 8)σ3(m0)

as desired, where we use that σ3(m1m2) = σ3(m1)σ3(m2) when (m1,m2) = 1 and
that σ3(2) = 9. When k ≥ 2, we have

r8(m) = 16(σ3(2km0)− 2σ3(2k−1m0) + 16σ3(2k−2m0))

= 16(1 +
k∑
r=1

23r − 2
k−1∑
r=0

23r + 24

k−2∑
r=0

23r)σ3(m0)

= 16(1 +
k∑
r=1

23r − 2−
k−1∑
r=1

23r+1 +
k−1∑
r=1

23r+1)σ3(m0)

= 16(−1 +
k∑
r=1

23r)σ3(m0)

as desired. �

4.1. The General Theory of Quadratic Forms. We start by develop some of
the general theory of quadratic forms. Throughout let Q be a positive definite
quadratic form with integral coefficients of rank k. We associate the matrix A as
in (68).

Definition 4.1.1. We define the discriminant of Q by

D =

{
(−1)

k
2 det(A) if k is even,

(−1)
k+1

2

2
det(A) if k is odd.

Remark 4.1.1. This makes sense because for A as above show that

det(A) ≡

{
(−1)

k
2 mod 4 if k is even,

0 mod 2 if k is odd.

Exercise 2, Sheet 7: Let A ∈ SPk, and let NA denote the level of A (i.e. the
smallest positive integer N such that N · A−1 ∈ SPk).

a) Show that if a prime p divides det(A), then p divides NA.

Now suppose that k is even and assume that 2 6 | det(A).

b) Show that (−1)k/2 det(A) ≡ 1 mod 4.
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c) Conclude that χDA(d) =
(

(−1)k/2 det(A)
d

)
depends only on d modulo NA.

Solution. For part a), suppose that p does not divide NA. Denote by B the reduc-
tion of the matrix B modulo p. Then A and NA ·A−1 are two matrices with integer
entries such that A ·NA · A−1 = NA · Id, which is invertible modulo p. Therefore,
A is a unit in Mk×k (Z/pZ) which implies that det(A) = det(A) is a unit in Z/pZ.
Equivalently, p does not divide det(A).

Now suppose that k is even and that det(A) is not divisible by 2. We will work
modulo 4. Since the entries of A are integers, and the entries in the diagonal are
even, there must be an index 2 ≤ j ≤ k such that a1

j is odd (otherwise det(A)
would be even). Interchanging rows and columns 2 and j (this corresponds to
multiplying A by a transposition matrix on both the left and the right, which does
not change the determinant), we can assume that a1

2 is odd. We can write

A =

(
P X
X t Q

)
P =

(
2a b
b 2a

)
X ∈M2×(k−2)(Z/4Z), Q ∈M(k−2)×(k−2)(Z/4Z)

and the diagonal entries of Q are even. Since b is odd, we see that det(A) =
−1 mod 4. In particular it is invertible. It is easy to see that(

P X
X t Q

)
=

(
I 0

X tP−1 I

)(
P 0
0 Q−X tP−1X

)(
I P−1X
0 I

)
Since P−1 has even entries in the diagonal, we deduce the same thing for the
(k− 2)× (k− 2) symmetric matrix X tP−1X, and therefore also for Q−X tP−1X.

Clearly det(A) = det(P ) det(Q − X tP−1X). Since det(P ) = −1 mod 4, we can
proceed inductively with Q − X tP−1X to deduce (−1)k/2 det(A) ≡ 1 mod 4, as
desired.

For part c), assume that d is odd. Write d = (−1)ε
∏

p p
ip and det(A) =

∏
q q

jq ,
where the primes are all odd. Using the definitions and the law of quadratic
reciprocity we calculate(

(−1)k/2 det(A)

d

)
= (−1)

k
2
ε

(
(−1)k/2 det(A)

|d|

)
= (−1)

k
2
ε
∏
p

(
(−1)k/2 det(A)

p

)ip
= (−1)

k
2
ε
∏
p

(−1)
k
2

(p−1)ip
2

∏
p,q

(
q

p

)ipjq
= (−1)

k
2
ε(−1)

k
2

∑
p
p−1

2
ip
∏
p,q

(
p

q

)ipjq∏
p,q

(−1)ipjq
(p−1)(q−1)

4

= (−1)
k
2
ε(−1)(

∑
p
p−1

2
ip)·( k2 +

∑
q
q−1

2
jq)
(
|d|

det(A)

)
= (−1)

k
2
ε

(
|d|

det(A)

)
=

(
(−1)ε

det(A)

)(
|d|

det(A)

)
=

(
d

det(A)

)
=
∏
q

(
d

q

)jq
.
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In the fifth equality we use that (−1)k/2 det(A) ≡ 1 mod 4 to deduce that k/2 +∑
q
q−1

2
jq is even. Since the last expression only depends on d modulo primes that

divide det(A), and since every such prime divides NA by part (a), we deduce that
χDA(d) only depends on d modulo NA, as desired. �

Remark 4.1.2. There is another way to prove part a) which gives a bit more
information. Let NA = pun and det(A) = pvm where (nm, p) = 1. Let adj(A) be
the adjugate matrix to A, so that A adj(A) = det(A)Ik holds. Then,

NAA
−1 =

NA

det(A)
adj(A) = pu−v

n0

m0

adj(A) ∈Mk(Z).

We deduce that the p-valuation of each entry of adj(A) is at least v−u. Therefore

vp(det(adj(A))) ≥ k(v − u).

On the other hand, from A adj(A) = det(A)Ik it follows that det(adj(A)) =
det(A)k−1. We arrive at

(k − 1)v ≥ k(v − u), equivalently, v ≤ ku.

Therefore, if v > 0 we must have u > 0, as desired.

Definition 4.1.2. Two quadratic forms Q1 and Q2 (of equal rank) are equivalent
(over Z) if there is U ∈ GLk(Z) such that

A1 = U>A2U.

Remark 4.1.3. We can view Q as above as a quadratic form over any ring R
containing Z. Equivalence over R is then defined by the obvious modification of
the definition above.

Definition 4.1.3. The group of automorphs of Q is defined by

O(Q) = {U ∈Mk(Z) : U>AU = A}.

This is a finite group and we write ]O(Q) = o(Q).

The numbers D and o(Q) are invariants of classes of equivalent forms. We write

r(n,Q) = ]{m ∈ Zr : Q(m) = n}

for the representation number of n by Q. (Since Q is assumed to be positive
definite this is a finite number.)

Definition 4.1.4. Two positive definite integral quadratic forms Q1 and Q2 are
said to be in the same genus (i.e. Q2 ∈ gen(Q1) or Q1 ∈ gen(Q2)) if they are
equivalent over Zp for all primes p.

Remark 4.1.4. Note that since both Q1 and Q2 are positive definite they are au-
tomatically equivalent over R.
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Exercise 1, Sheet 8: Give an example of two integral quadratic forms that lie
in the same genus but not in the same equivalence class (over Z). Both assertions
should be proved.

Solution. We will prove that setting

A1 =

(
p 0
0 q

)
and A2 =

(
1 0
0 pq

)
for distinct odd primes p, q the matrices are in the same genus iff p is a square
modulo q and q is a square modulo p. By quadratic reciprocity, this implies
that one of them is congruent to 1 modulo 4. First of all, it is evident that the
quadratic forms are not equivalent over Z, since A2 represents 1 but A1 does not
(using positivity of x2). To see that they are in the same genus, we recall the
following version of Hensel’s lemma:

Proposition 4.1.5. Let r be a prime (including r = 2) and let f(X) ∈ Zr[X] be
a polynomial with p-adic integers as coefficients. Suppose that there is x0 ∈ Zr
such that vr(f(x0)) > 2vr(f

′(x0)). Then, there is x ∈ Zr with f(x) = 0 and
vr(x− x0) ≥ vr(f(x0))− vr(f ′(x0)).

Proof. See Serre’s A course in arithmetic, page 14. �

Now consider an odd prime r distinct from p and q. We assert that equation
pX2 + qY 2 = 1 has non-trivial solution mod r. Indeed, considering the two sets
A := {1 − px2 | x ∈ Z/rZ} and B := {qy2 | y ∈ Z/rZ}, they have cardinality
(r + 1)/2, so they must intersect. Lifting to Zr that means there are x0, y0 ∈ Zr
such that px2

0 + qy2
0 = 1 mod r. One of x0, y0 has to be a unit, say x0. Then,

considering f(X) := pX2 + qy2
0 − 1, we have f(x0) = 0 mod r and f ′(x0) = 2px2

0

is a unit. We can apply Hensel’s lemma and find x ∈ Zp and y = y0 such that

px2 + qy2 = 1. It is an easy matter to check that, for P =

(
x −qy
y px

)
we have

det(P ) = 1 and

P tA1P =

(
x y
−qy px

)(
p 0
0 q

)(
x −qy
y px

)
=

(
1 0
0 pq

)
So far, no conditions on p and q were needed. Now let’s see what happens at Zp.
For A1 and A2 to be equivalent over Zp, in particular they need to represent the
same numbers. For A1 to represent 1, we need there needs to exist a solution to
pX2 +qY 2 = 1 in Zp. Reducing modulo p, it is necessary that q is a square modulo
p. This condition is also sufficient, since then the polynomial f(Y ) := qY 2− 1 has
a solution y0 modulo p with f ′(y0) = 2qy0 ∈ Z×p , so that a true zero y ∈ Z×p exists.

That is, y2 = q−1. As before, considering P =

(
0 −y−1

y 0

)
we find P tA1P = A2.

The same argument works over Zq. In particular, for A1 and A2 to be equivalent
over both Zp and Zq it is necessary and sufficient that p is a square mod q and
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vice versa. By quadratic reciprocity, at least one of the primes will have to be
congruent to 1 mod 4.

Suppose that q ≡ 1 modulo 4. As before, for A1 and A2 to be equivalent over
Z2 it is necessary and sufficient that A1 represents 1 (if this holds we apply the
same change variables as before). We need to find a solution to pX2 + qY 2 = 1 in
Z2. Working modulo 8 we have two cases. If q ≡ 1 mod 8, then f(Y ) := qY 2 − 1
has v2(f(1)) ≥ 3 and v2(f ′(1)) = 1, so by Hensel’s lemma there exists y ∈ Z×2 with
qy2 = 1. Therefore (0, y) is a solution to pX2 + qY 2 = 1 as desired. On the other
hand, if q ≡ 5 mod 8, we consider f(Y ) := qY 2 − 1− 4p. As before, v2(f(1)) ≥ 3
and v2(f ′(1)) = 1, so by Hensel’s lemma there exists y such that (2, y) is a solution
to pX2 + qY 2 = 1, as desired. Some examples can be, letting q = 5, p = 11 or
q = 17, p = 13. �

Of course two forms that are equivalent over Z are automatically in the same
genus. It turns out that the genus can be decomposed into finitely many equiva-
lence classes:

gen(Q) =
⊔
i

[Qi].

We define the genus mass by

m(gen(Q)) =
∑
i

o(Qi)
−1.

We also define the weighted sum

r(n, gen(Q)) = m(gen(Q))−1
∑
i

r(n,Qi)

o(Qi)
.

We have the following important theorem:

Theorem 4.1.6 (Minkowski-Siegel-Smith). Let Q be a positive definite integral
quadratic for. Then we have

r(m, gen(Q)) = δ∞(n,A) ·
∏
p

δp(n,A).

where A ∈ SPk such that Q = QA and the local densities are defined in (69) and
(70).

We omit the proof and return to the theory that involves modular forms (more
directly). To do so we need to understand the spaces M k

2
(Γ0(2NA), ϑth) where

A ∈ SPk better.

Proposition 4.1.7. A set of representatives of Γ0(N)\SL2(Z) is given by(
∗ ∗
u v

)
for v | N, (u, v) = 1 and u mod

N

v
.
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In particular

[SL2(Z) : Γ0(N)] = N
∏
p|N

(1 + p−1).

Furthermore, an exhaustive set of inequivalent cusps for Γ0(N) is given by

u

v
with v | N, (u, v) = 1 and u mod (v,N/v).

Proof. We write(
α β
γ δ

)
︸ ︷︷ ︸
∈Γ0(N)

(
a b
c d

)
︸ ︷︷ ︸
∈SL2(Z)

=

(
∗ ∗

γa+ δc γb+ δd

)
=

(
∗ ∗
u v

)
.

We first observe that (d,N) is invariant under right multiplication by elements
in Γ0(N). Furthermore, choosing γ and δ appropriately allows us to ensure that
v = (d,N) | N . Note that all possible solutions

γ′b+ δ′d = v

are of the form δ′ = δ − bt and γ′ = γ + dt. Since we need N | γ′ to hold we need
to assume that t ≡ 0 mod N/v. This is however the only restriction. Note that we
have u′ = γ′a + δ′c = u + t. Thus we can choose u freely modulo N/v. It is clear
from the argument that we have found our set of representatives. To compute the
index is now straight forward and we omit the computation.

Since Γ0(N) ⊆ SL2(Z) all cusps are equivalent to ∞ over Z. Write

τ = S ·
(
∗ ∗
u v

)−1

=

(
u ∗
v ∗

)
.

In particular we have τ∞ = u
v

with (u, v) = 1 and v | N . We now simply check
when such fractions are equivalent:

u′

v′
=

(
α β
γ δ

)
︸ ︷︷ ︸
∈Γ0(N)

u

v
.

From v′ = γu + δv we obtain v | v′. Similarly we also have v′ | v so that v′ = v
and δ ≡ 1 mod N/v. We conclude by observing that

u′ = αu+ βv ≡ αu ≡ δu ≡ u mod (v,N/v).

�

Example 4.1.8. For example Γ0(4) has (up to equivalence) the three cusps ∞, 0
and 1

2
.
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Since in general it is important to know if a cusp is singular (with respect to
ϑth) for example we will compute the stabilizers in detail. Given a cusp a = u

v
as

above we have

τa =

(
u ∗
v ∗

)
∈ SL2(Z) with τa∞ = a.

We must have
τ−1
a Γaτa ⊆ Γ∞.

Thus we can recover

Γa = τaΓ∞τ
−1
a ∩ Γ0(N) =

{
±
(

1−muv mu2

−mv2 1 +muv

)
: mv2 ≡ 0 mod N

}
.

Thus m ranges over all integers divisible by ma = N/(N, v2). Thus Γa is generated
by

γa =

(
1−mauv mau

2

−mav
2 1 +mauv

)
.

Note that in particular a real scaling matrix is given by

σa = τa ·
(√

ma 0
0 1√

ma

)
.

To each singular cusp a of Γ0(N) we attach the (generalized) Eisenstein series

Ea(z) =
∑

γ∈Γa\Γ

ϑth(γ)w(σ−1
a , γ)jσ−1

a γ(z)−
k
2 (73)

For k > 4 this converges and we have Ea(z) ∈M k
2
(Γ0(N), ϑth). Note that Ea = Pa,1

where the Poincaré series was defined in (40) for p = 1 being constantly one. For
another singular cusp b the same procedure that we used to compute the Fourier
expansion of Poincaré series yields

[Ea| k
2
σb](z) = δa=b +

∞∑
n=1

ηa,b(n)e(nz), (74)

where

ηa,b(n) =

(
2π

i

) k
2 n

k
2
−1

Γ(k
2
)

∑
c>0

c−kSa,b(0, n; c).

Remark 4.1.9. We leave it as an exercise to check that for N = 1, 4 | k and
ϑth = ϑtr one recovers the correct Fourier coefficients of the Eisenstein series E k

2

from η∞,∞(n).

Exercise 1, Sheet 9: Recall that the Ramanujan sum was defined by

cq(d) =
∑

x mod q
(x,q)=1

e

(
dx

q

)
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It evaluates to

cq(d) =
∑
y|(q,d)

µ

(
q

y

)
y (75)

where µ is the Möbius function given by

ζ(s)−1 =
∞∑
n=1

µ(n)n−s (76)

for Re(s) > 1.

Let k ≥ 4 be even, let Γ = SL2(Z) and take a =∞. Recall the definition of the
Eisenstein series Ea ∈Mk(SL2(Z), θtr) and its Fourier expansion.

a) Evaluate the Fourier coefficients

η∞,∞(n) =

(
2π

i

)k
nk−1

Γ(k)

∑
c>0

c−kS∞,∞(0, n; c)

as explicit as possible.
b) Conclude that the Fourier expansion of Ea agrees with the one of the clas-

sical Eisenstein series Ek.

Solution. Clearly, S∞,∞(0, n; c) = cc(n). Using (75), (76) and letting d = cy we
get

∞∑
c=1

c−kcc(n) =
∞∑
c=1

∑
y|(c,n)

c−kµ

(
c

y

)
y =

∑
y|n

∞∑
d=1

(dy)−kµ(d)y = ζ(k)−1
∑
y|n

y1−k

= ζ(k)−1
∑
d|n

(n
d

)1−k
= n1−kσk−1(n)ζ(k)−1.

It follows that,

η∞,∞(n) =

(
2π

i

)k
1

Γ(k)ζ(k)
σk−1(n).

Then we use one of the identities for the Bernoulli numbers, 2ζ(k) = (2π)k

k!
Bk =

(2π)k

kΓ(k)
Bk. From this, it follows that

η∞,∞(n) =

(
2π

i

)k
2k

(2π)k
σk−1(n)

Bk

= ik
2k

Bk

σk−1(n).

Since this expression agrees with the n-th Fourier coefficient of Ek, we are finished.
�

Remark 4.1.10. We explain how the identities (75) and (76) are proved. We say
that a function f : Z>0 → C is multiplicative if f(nm) = f(n)f(m) for coprime
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positive integers. For example, f = φ, the Euler totient function, is multiplicative.
Given two functions f, g : Z>0 → C we define its convolution as

(f ∗ g)(n) =
∑
d|n

f(d)g
(n
d

)
.

Convolution is commutative and associative, and the function δ1 is the identity.
Furthermore, the convolution of two multiplicative functions is multiplicative. In-
deed, if n,m are coprime and d | nm then we can write uniquely d = d1d2 where
d1 | n and d2 | m. Therefore,

(f ∗ g)(nm) =
∑
d|n

f(d)g
(n
d

)
=
∑
d1|n

∑
d2|m

f(d1d2)g

(
nm

d1d2

)

=

∑
d1|n

f(d1)g

(
n

d1

)∑
d2|m

f(d2)g

(
m

d2

) .

Recall that the Möbius function µ is the multiplicative function defined on power
of primes as µ(1) = 1, µ(p) = −1 and µ(pn) = 0 for n ≥ 2. Also, define idd as
idd(n) = n if n | d, and zero otherwise. This function is clearly multiplicative, and
the identity (75) is equivalent to proving c·(d) := (µ ∗ idd)(·). Observe also that if
d is fixed and q = nm coprime, then since x ∈ (Z/(nm)Z)× can be expressed as
x = rmm+ snn for unique r ∈ (Z/nZ)× and s ∈ (Z/mZ)×, we deduce

cnm(d) =
∑

x mod nm
(x,nm)=1

e

(
dx

q

)
=

∑
r mod n
(r,n)=1

∑
s mod m
(r,n)=1

e

(
dmr

n

)
e

(
dns

n

)
= cn(md)cm(nd) = cn(d)cm(d)

where the last equality follows since (n,m) = (m,n) = 1. Since all functions are
multiplicative, to check c·(d) := (µ ∗ idd)(·) we can restrict to prime powers. Let p
a prime and d = pnd0 with (d0, p) = 1. Then it is very simple to check

(µ ∗ idd)(p
a) =


1, if a = 0;

pa − pa−1, if 0 < a ≤ n;

−pn, if a = n+ 1;

0, if a ≥ n+ 2

We need to prove that these formulae also hold for cpa(d). For a = 0 it is clear.
For a > 0 we evaluate the sum as

cpa(d) =
∑

x mod pa

(x,q)=1

e

(
d0x

pa−n

)
=

∑
x mod pa

e

(
d0x

pa−n

)
−

∑
y mod pa−1

e

(
d0y

pa−n−1

)
(77)
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Then the formula follows by character orthogonality. This proves (75). We move
to (76). To any arithmetic function f : Z>0 → C we can associate the Dirichlet
L-function Lf defined as

Lf (s) =
∞∑
n=1

f(n)

ns

If |f(n)| ≤ Cnσ0 , then the series converges absolutely on Re(s) > σ0 + 1 and
defines an holomorphic function there. If f is multiplicative, we have the product
decomposition

Lf (s) =
∏

p prime

(
1 +

∞∑
n=1

f(p)

pns

)
.

Also, if f = g ∗ h then one checks that

Lg∗h(s) =
∞∑
n=1

∑
d|n

g(d)h
(
n
d

)
ns

=
∞∑
d=1

∞∑
c=1

g(d)

ds
h(c)

cs
= Lg(s)Lh(s).

This is valid in the domain where both Dirichlet series are absolutely convergent.
When g = cons1, defined as const1(n) = 1 for all n, we have Lconst1(s) = ζ(s). It
is immediate to check that const1 ∗ µ = δ1, for example by looking at power of
primes, and since Lδ1(s) ≡ 1 we deduce

ζ(s)Lµ(s) ≡ 1

as desired.

Definition 4.1.5. For k ≥ 5 we define the Eisenstein space by

E k
2
(Γ0(N), ϑth) = 〈Ea|a singular〉.

Remark 4.1.11. Since the Petersson inner product 〈f, g〉 is defined as soon as f
or g is cuspidal it makes sense to speak of S k

2
(Γ0(N), ϑth)> ⊂ M k

2
(Γ0(N), ϑth). It

turns out that
S k

2
(Γ0(N), ϑth)> = E k

2
(Γ0(N), ϑth). (78)

In any case we write28

θ1,QA(z) = EQA(z) + FQA(z),

where
EQA(z) ∈ E k

2
(Γ0(N), ϑth) and FQA(z) ∈ S k

2
(Γ0(N), ϑth).

If k ≥ 5 we can decompose

EQA(z) =
∑

a singular

ϕa(QA)Ea(z).

28This makes sense for all k when we use the identification (78). If we want to make use of
the explicit construction of the Ea, then we need to assume that k ≥ 5.
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By construction of Ea we obviously have

ϕa(Qa) = lim
y→∞

[θ1,QA| k
2
σa](z) = aθ1,QA (0; a).

In particular one can in principle compute the Eisenstein part EQA(z) of θ1,QA

rather explicitly.

Example 4.1.12. Let us consider the QA = x2
1 + . . .+ x2

s. Then we have

θ1,QA(z) = θ(z)s,

where
θ(z) =

∑
n∈Z

e(n2z) ∈M 1
2
(Γ0(4), ϑth)

is the standard theta function. (Applying our theorem for the automorphy of
theta functions directly might give level 8 at first, but one can extend the theta
multiplier ϑth to Γ0(4) in this case.) As noted above Γ0(4) as 3 cusps:

a ma γa singular for ϑth

1 4

(
−3 4
−4 5

)
Yes

1
2

1

(
−1 1
−4 3

)
No

1
4

1

(
−3 1
−16 5

)
Yes

We obtain
ϕ1(QA) = i−

s
2 , ϕ 1

2
(QA) = 0 and ϕ 1

4
(QA) = 1.

This can be seen as follows. First note that the cusp 1
4

is equivalent to ∞ and
θ(z) → 1 as z → ∞. (This is also obvious from the Fourier expansion at infinity,
since 0 is represented exactly once.) On the other hand 1

2
is non-singular and thus

θ has by default no zeroth Fourier coefficient at 1
2
. It follows that the same is true

for (integral) powers of θ. Finally, the value at the cusp 1, which is equivalent to
0, can be computed from the transformation behavior directly.

For s = 2, 4, 6, 8 the cuspidal part FQA(z) turns out to be zero. In particular one
will obtain formulae for the representation numbers rs(n) that closely resembles
Jacobi’s Four Square Theorem. However, as soon as s ≥ 10 the cuspidal part
contributes non-trivially. For example one can see that

r10(n) =
64

5

∑
d|n

χ4(n/d)d4 +
4

5

∑
d|n

χ4(d)d4

︸ ︷︷ ︸
=aEQA

(n,∞)

+
8

5

∑
z∈Z[i],

Nr(z)=n

z4

︸ ︷︷ ︸
=aFQA

(n,∞)

.

For larger (even) s the formula become even more complicated. Note that the case
of odd s is in general more complicated due to the complications introduced from
half integral weight forms.
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We come to the following incredible fact, which in hindsight might be quite
natural:

Theorem 4.1.13 (Siegel). Let QA be a positive definite quadratic from of rank k
(i.e. A ∈ SPk). Then we have

EQA(z) = θgen(QA)(z),

where

θgen(QA)(z) = 1 +
∞∑
n=1

r(n, gen(QA))e(nz) = m(QA)−1
∑
i

o(Qi)
−1θ1,Qi(z).

Proof. Using the transformation properties of the theta functions θ1,Qi (where
gen(Q) =

⊔
i[Qi]) with respect to SL2(Z) we see that the numbers ϕa(Qi) are

genus invariant. In particular

EQA(z)− θgen(QA)(z) ∈ S k
2
(Γ0(2NA), ϑth).

We will skip the argument that the difference is actually zero.29 �

Remark 4.1.14. This result has vast generalizations usually named Siegel-Weil for-
mulae. Note that most modern proofs will look very different and usually involve
Weil-representations (i.e. oscillatory representations) as a replacement for theta
functions. Siegel’s original formulation is quite different from what we have stated
above: Für gerades m > 0 lässt sich F (S, τ) homogen linear mit constanten Coef-
ficienten zusammensetzen aus den (4S)-ten Teilwerten der (m

2
− 2)-ten Ableitung

der mit den Perioden 1, τ gebildeten elliptischen ℘-Function.30

Recall that by the Minkowski-Siegel-Smith Theorem the genus representation
numbers are given in terms of local densities. Therefore, comparing coefficients
gives

r(n,QA) = δ∞(n,A) ·
∏
p

δp(n,A) + aFQA (n,∞).

Thus as soon as we can produce strong enough bounds for the Fourier coefficients
of cusp forms we get a good handle on the numbers r(n,QA). (Of course this also
requires some lower bounds on the local densities.) This motivates the study of
upper bounds for Fourier coefficients of cusp forms.

Exercise 2, Sheet 9:

a) Show that there are A1, A2 ∈ SP24 with det(A1) = det(A2) = 1 and
c1, c2 ∈ C so that 0 6= c1θ1,QA1

+ c2θ1,QA2
∈ C ·∆.

29One way to see this is a nice trick using Hecke operators.
30In our notation τ = z ∈ H, m = k, S = A is an integral positive definite symmetric matrix,

S = det(S) and F (S, τ) = θgen(QA)(τ).
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b) Show that for any k ∈ N the space M4k(SL2(Z), ϑtr) can be spanned by
theta functions θ1,QA with A ∈ SP8k and det(A) = 1.

Solution. Recall the quadratic form of Remark 3.0.16. This was defined as

Q8(x) =
1

2
A[x] =

1

2

8∑
r=1

x2
r +

1

2

(
8∑
r=1

xr

)2

− x1x2 − x2x8.

We observe that A ∈ SP8 and det(A) = 1 (this can be computed directly, or
else can be constructed as in Serre A course in Arithmetic page 51). Therefore,
θ1,QA ∈M4(SL2(Z), ϑtr) = CE4, and comparing the constant coefficient we get

θ1,QA = E4 (79)

Consider now the direct sum B := A ⊕ A ⊕ A. We observe that θ1,QB = θ3
1,QA
∈

M12(SL2(Z), ϑtr). Therefore, we can write

E3
4 = θ1,QB = aE12 + b∆

for unique a, b ∈ C. By comparing the constant coefficient, it follows that a = 1.
Recall that

E4(z) = 1 + 240
∞∑
n=1

σ3(n)qn and E12(z) = 1 +
24 · 2730

691

∞∑
n=1

σ11(n)qn.

Comparing the coefficient of q, we calculate b = 720− 24·2730
691

, in particular b 6= 0.
Note that since a = 1, for the Eisenstein part of θ1,QB we have EQB = E12. From
theorem 4.1.10, we obtain EQB = θgen(QA), where

θgen(QB) = m(QB)−1
∑
i

o(Qi)
−1θ1,Qi

is an average of theta functions over the genus of B. Since this average equals
E12, which is different from θ1,QB (since b 6= 0) we deduce that the genus of B is
composed not only of B, and that there is C in the genus of B with θ1,QC 6= θ1,QB .
Since C is locally isomorphic to B, one can deduce that C ∈ SP24 with det(C) = 1.
Indeed, det(C) > 0 since B and C are equivalent over R, and if det(C) > 1 we
would have p | det(C) for some prime, but then B and C would not be equiva-
lent over Zp, a contradiction. Looking at the constant coefficient, we deduce that
θ1,QB − θ1,QC = c∆ for some c 6= 0, which is what we wanted.

For part b), recall that θ1,QA⊕B = θ1,QA · θ1,QB . Consider the direct sum L :=
⊕k≥0L4k of vector spaces L4k, where L4k ⊂ M4k(SL2(Z), ϑtr) is the subspace
spanned by theta functions θ1,QA with A ∈ SP8k and det(A) = 1. Then this di-
rect sum is closed under multiplication, and is thus a subring of M =

⊕
k≥0M4k.

We know that θ1,QA = E4, θ2
1,QA

= E8 and c−1 (θ1,QB − θ1,QC ) = ∆. Therefore,
L4r = M4r for 0 ≤ r ≤ 3. Recall that

M4r+12 = CE4r+12 ⊕∆M4r.
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Considering any A ∈ S8k+24 with det(A) = 1, we have

θ1,QA = E4r+12 + c∆f4r

for some c ∈ C and f4r ∈ M4k. By induction we can assume M4k = L4k, and
since ∆ ∈ L12 and L is closed under multiplication and linear combinations, we
deduce E4r+12 ∈ L4k+12. By the direct sum decomposition above, this shows that
L4k+12 = M4k+12, and we finish by induction. �

Remark 4.1.15. A direct way of proving part a) follows from Serre A course in
Arithmetic, page 51. We will assume that the reader already has had a look at
that page. For each k ≥ 1, Serre constructs a free abelian group of rank 8k,
denoted by Γ8k, together with a certain positive definite symmetric bilinear form
(·) : Γ8k × Γ8k → Z such that v · v ∈ 2Z for all v ∈ Γ8k and such that the map

Φ8k : Γ8k → HomZ (Γ8k,Z) v 7→ Φ8k(v) := (w 7→ Φ8k(v)(w) = v · w)

is an isomorphism. This is the coordinate free version of the following statement:
whenever we choose a Z-basis vi of Γ8k, then the matrix A8k, with (A8k)i,j = vi ·vj,
satisfies | det(A8k)| = 1. Since A8k is positive definite, it must be det(A8k) = 1.
Therefore, we have A8k ∈ S8k and det(A8k) = 1, so that letting Q8k(x) = 1

2
xtAx,

we have θ1,Q8k
∈ M4k(SL2(Z), ϑtr). In particular, for k = 1 we have θ1,Q8 = E4

as in part a), and for k = 2 we have θ1,Q16 = E8 = θ2
1,Q6

. We will prove that

θ1,Q24 6= E3
4 . For this, it is enough to calculate the coefficient of q in the expansion

at infinity. Equivalently, we need to calculate the representation number of 2 for
Γ24, that is, the number of v ∈ Γ8k such that v · v = 2. Serre describes Γ8k as the
abelian group of vectors v = (xi) ∈ Q8k such that

2xi ∈ Z, xi − xj ∈ Z,
8k∑
i=1

xi ∈ 2Z

and the bilinear product is just the restriction of the usual euclidean product.
Suppose v · v = 2. We have v =

(
yi
2

)
where yi ∈ Z and all have the same parity. If

they were all odd we would have v · v ≥ 24/4 = 6 > 2, a contradiction. Therefore,
we can write v =

∑
i aiei where ei is the canonical basis and ai ∈ Z. Since∑

a2
i = 2, we see that the only possibility is that |ai| = 1 for two indices, and

aj = 0 otherwise. Therefore, the solutions to v · v in Γ8k are

v = ±ei ± ej (i 6= j)

which gives a total of 4
(

24
2

)
= 2 ·24 ·23 choices. Since the q coefficient of E3

4 equals
720, we deduce that

θ1,Q24 = E3
4 + (2 · 24 · 23− 3 · 240)∆ = E3

4 + 24 · 16∆

In particular, θ1,Q24 6= E3
4 = θ3

1,Q8
, as desired.
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Bonus Exercise: Prove the following formula

r6(m) := ]{(n1, . . . , n6) ∈ Z6 : n2
1+. . .+n2

6 = m} = 16
∑
d|m

χ−4

(m
d

)
d2−4

∑
d|m

χ−4(d)d2.

Solution. As before, introduce A6 := diag(2, 2, 2, 2, 2, 2) and

θ1,Q6(z) =
∑
n∈Z6

e

(
1

2
A8[n]z

)
=
∑
m≥0

r6(m)e(mz)

and observe that θ1,Q6 = θ6. This time the multiplier ϑ6
th is not trivial on Γ0(4).

Recall that

ϑth

((
a b
4c d

))
=

(
4c

d

)
εd where εd :=

{
1, if d ≡ 1 mod 4;

i, if d ≡ 3 mod 4

Therefore, ϑ6
th is the multiplier χ−4, defined as

χ−4

((
a b
4c d

))
= χ−4(d) :=

{
1, if d ≡ 1 mod 4;

−1, if d ≡ 3 mod 4

Therefore, θ1,Q6 ∈M3(Γ0(4), χ−4). To apply our usual strategy we need to find a
basis of this finite dimensional vector space. First, we claim that dimM3(Γ0(4), χ−4) =
2. For the upper bound, we apply an identical argument to that of the proof of
Lemma 4.0.1. For the sake of contradiction, suppose that dimM3(Γ0(4), χ−4) ≥
3. Then, by forming a linear combination we can find a non-zero 0 6= f ∈
M3(Γ0(4), χ−4) with a zero of order at least 2 at ∞. Then 0 6= f 2 ∈M6(Γ0(4), θtr)
has a zero of order at least 4 at infinity. Therefore, the product

g :=
∏

γ∈Γ0(4)\SL2(Z)

[f 2|6γ] ∈M36(SL2(Z), ϑtr) (80)

is a modular form of weight 36 for SL2(Z) with a zero of order at least 4 at
infinity. Applying the formula of Theorem 2.4.1, we deduce that g is identically
zero, a contradiction. Therefore, dimM3(Γ0(4), χ−4) ≤ 2. On the other hand,
Γ0(4) has three cusps. In the notation of Example 4.1.8, they are represented by
1, 1/2 and 1/4. The cusps represented by 1 and 1/4 are singular for ϑth, therefore
also singular for χ−4 = ϑ2

th. On the other hand, the stabilizer of the cusp 1/2 is
generated by

γ 1
2

=

(
−1 1
−4 3

)
so that

χ−4

(
γ 1

2

)
= χ−4(3) = −1 (81)

Therefore, the cusp 1/2 is nonsingular for χ−4. We arrive at the conclusion that for
the multiplier χ−4 the group Γ0(4) has two inequivalent singular cusps. Therefore,
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the space E3(Γ0(4), χ−4) of Definition 4.1.5 has dimension 2, and after noting that
the cusp 1/4 is equivalent to ∞ and the cusp 1 is equivalent to 0, we deduce that

M3(Γ0(4), χ−4) = CE∞ ⊕ CE0 (82)

where Ea is the generalized Eisenstein series associated to a singular cusp as in
(73). The Fourier expansion of these series at ∞ is given in (74), so that

E∞(z) = 1 +
∞∑
n=1

η∞,∞(n)e(nz) and E0(z) =
∞∑
n=1

η0,∞(n)e(nz)

where

η∞,∞(n) =

(
2π

i

)3
n2

2

∑
c>0

c−3Sχ−4
∞,∞(0, n; c)

and η0,∞(n) =

(
2π

i

)3
n2

2

∑
c>0

c−3S
χ−4

0,∞(0, n; c).

We have modified the notation for the Kloosterman sums slightly, to avoid con-
fusion with the classical Kloosterman sums. We start by analysing Sχ−4

∞,∞(0, n; c).
These are nonzero only for c = 2rc0, where r ≥ 2 and (c0, 2) = 1, and in that case
they are defined by

Sχ−4
∞,∞(0, n; c) =

∑
d∈(Z/cZ)×

χ−4(d)e

(
nd

c

)
.

Suppose that c = c1c2 with 4 | c1 and (c1, c2) = 1. Let c1, c2 be integers rep-
resenting the inverse of c1 modulo c2 and of c2 modulo c1 respectively. We can
write any d ∈ (Z/cZ)× uniquely as d = d1c2c2 + d2c1c1, where d1, d2 range over
representatives of (Z/c1Z)× and (Z/c2Z)× respectively. Since 4 | c1 and χ−4(d)
only depends on d modulo 4, we see that

Sχ−4
∞,∞(0, n; c) =

∑
d∈(Z/cZ)×

χ−4(d)e

(
nd

c

)
=

∑
d1∈(Z/c1Z)×

d2∈(Z/c2Z)×

χ−4(d1)e

(
nd1c2

c1

)
e

(
nd2c1

c2

)

= χ−4(c2)

 ∑
d1∈(Z/c1Z)×

χ−4(d1)e

(
nd1

c1

) ∑
d2∈(Z/c2Z)×

e

(
nd2

c2

)
= χ−4(c2)Sχ−4

∞,∞(0, n; c1)S∞,∞(0, n; c2)

where S∞,∞(0, n; c) is the Ramanujan sum as in (75). In particular, writing c =
2rc0 for (c0, 2) = 1, we have

Sχ−4
∞,∞(0, n; 2rc0) = χ−4(c0)Sχ−4

∞,∞(0, n; 2r)
∑

y|(c0,n)

µ

(
c0

y

)
y.
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Write n = 2sn0 where (n0, 2) = 1. Observe that we can write d ∈ (Z/2rZ)× as
d = 1 + 4x or d = 3 + 4x for a unique x ∈ Z/2r−2Z. Therefore,

Sχ−4
∞,∞(0, 2sn0; 2r) =

∑
x mod 2r−2

e
( n0

2r−s

)
e
( n0x

2r−s−2

)
−

∑
x mod 2r−2

e

(
3n0

2r−s

)
e
( n0x

2r−s−2

)
=

(
e
( n0

2r−s

)
− e

(
3n0

2r−s

)) ∑
x mod 2r−2

e
( n0x

2r−s−2

)
.

By character orthogonality, the sum vanishes unless r ≤ s + 2, in which case it
equals 2r−2. On the other hand, if r ≤ s + 1 the first factor vanishes. The only
remaining case is r = s+ 2, where it is easily checked that

Sχ−4
∞,∞(0, 2sn0; 2s+2) = 2s+1χ−4(n0)i.

Therefore, when calculating η∞,∞(n) where n = 2sn0, we restrict to c = 2s+2c0

and employ the above formulas, we obtain

η∞,∞(n) =

(
2π

i

)3
n2

2

∑
c0 odd

2−3(s+2)c−3
0 2s+1χ−4(n0)iχ−4(c0)

∑
y|(c0,n)

µ

(
c0

y

)
y

= −π
3

8
n2

0χ−4(n0)
∑
y|n0

y−2χ−4(y)
∑
d odd

χ−4(d)µ(d)

d3
.

Recall that L(s, χ−4µ)L(s, χ−4) = 1, where

L(s, f) =
∞∑
d=1

f(d)

ds

In particular, the inner sum above equals L(3, χ−4)−1 and we have

η∞,∞(n) = − π3

8L(3, χ−4)

∑
y|n0

(
n0

y

)2

χ−4

(
n0

y

)
= − π3

8L(3, χ−4)

∑
d|n0

d2χ−4(d)

= − π3

8L(3, χ−4)

∑
d|n

d2χ−4(d) = −4
∑
d|n

d2χ−4(d)

where we use that χ−4(d) is 0 for even d and that L(3, χ−4) is an special value of

an L-function that can be calculated explicitly as L(3, χ−4) = π3

32
. We have done

half the work, and now we need to calculate the coefficients η0,∞(n), which involve
the Kloosterman sums S

χ−4

0,∞(0, n; c). According to equation (46), these are given
by

S
χ−4

0,∞(0, n; c) =
∑

γ=

a ∗
c d

∈U(Z)\σ−1
0 Γ0(4)/U(Z)

θ0,∞(γ)e

(
nd

c

)
(83)
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In our case, since the weight is integral, one can check that the factor θ0,∞(γ)
reduces to χ−4(σ0γ). Also, in the definition above σ0 is a scalling matrix for the

cusp 0, and we can choose σ0 =

(
0 −1

2
2 0

)
We calculate

σ−1
0

(
x y
4z w

)
=

(
0 1

2
−2 0

)(
x y
4z w

)
=

(
2z w/2
−2x −2y

)
=: γ

Since x is odd, we see that S
χ−4

0,∞(0, n; c) is nonzero only for c = 2c0, where (c0, 2) =
1. Also, y is determined modulo x above, and if γ is as above, χ−4(σ0γ) = χ−4(w).
Since xw − 4yz = 1, we have w = x = x mod 4. Therefore, writing c0 = −x we
get χ−4(σ0γ) = −χ−4(c0). Putting these considerations together, we arrive at

S
χ−4

0,∞(0, n; 2c0) = −χ−4(c0)
∑

d∈(Z/c0Z)×

e

(
nd

c0

)
= −χ−4(c0)

∑
y|(c0,n)

µ

(
c0

y

)
y.

Inserting this into the definition of η0,∞(n) we have

η0,∞(n) =

(
2π

i

)3
n2

2

∑
c0 odd

−χ−4(c0)c−3
0 2−3

∑
y|(c0,n)

µ

(
c0

y

)
y

= −iπ3n
2

2

∑
y|n0

χ−4(y)y−2
∑
d0 odd

µ(d0)χ−4(d0)

d3
0

= −i π3

2L(3, χ−4)

∑
y|n

χ−4(y)

(
n

y

)2

= −16i
∑
d|n

χ−4

(n
d

)
d2.

We now have all we need to finish the exercise. Let θ1,Q6 = aE∞ + bE0 for
unique a, b ∈ C. Looking at the constant coefficient we deduce a = 1, and from
12 = r6(1) = η∞,∞(1) + bη0,∞(1) = −4− 16ib we deduce31 b = i. Therefore,

r6(n) = 16
∑
d|n

χ−4

(n
d

)
d2 − 4

∑
d|n

χ−4(d)d2.

�

Remark 4.1.16. The argument above actually gives the value of L(3, χ−4). Note
that by our reasoning we have

η∞,∞(n) = − π3

8L(3, χ−4)

∑
d|n

χ−4(d)d2 and η0,∞(n) = −i π3

2L(3, χ−4)

∑
d|n

χ−4

(n
d

)
d2.

31Observe that, in the notation of Example 4.1.12, for s = 6, we have a = ϕ1/4(QA6
) = 1 and

b = ϕ1(QA6
) = i, as expected.
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Looking at the constant coefficient of the equation Θ1,Q6 = aE∞ + bE0 we deduce
a = 1 as before. Using r6(1) = 12 and r6(2) = 4

(
6
2

)
= 60 we obtain

12 = − π3

8L(3, χ−4)
− i π3

2L(3, χ−4)
b and 60 = − π3

8L(3, χ−4)
− i 2π3

L(3, χ−4)
b

where we have used
∑

d|2 χ−4

(
2
d

)
d2 = 4. These two equations imply b = i and

L(3, χ−4) = π3

32
, as desired.

4.2. Kloosterman sums and bounds for Fourier coefficients of cusp forms.
In this section we will establish basic upper bounds for the Fourier coefficients of
cusp forms using the Petersson formula Theorem 2.5.10. An essential ingredient
will be a good understanding of the Kloosterman sums Sa,b(m,n; c) defined in (46).
Directly from the definition we obtain the bound∑

0<c≤X

c−1|Sa,b(m,n; c)| ≤
∑

0<c≤X

c−1]

{
d mod c :

(
∗ ∗
c d

)
∈ σ−1

a Γσb

}
≤ X

ca,b
. (84)

In the last step we have applied Lemma 2.5.3. Putting X = c yields the weak
bound

|Sa,b(m,n; c)| ≤ c2

ca,b
.

Note that another crucial ingredient will be a satisfying bound for the J-Bessel
function. This is a classical well studied function and it is easy to locate the
estimate

Jk(x) ≤ Ck ·min(xk, x−
1
2 ), (85)

where Ck > 0 is some constant depending on k.

Remark 4.2.1. Applying Petersson’s formula (Theorem 2.5.10) with a = b and
m = n yields∑

f∈O

|af (m; a)|2 =
(4πm)k−1

Γ(k − 1)

(
1 + 2πi−k

∑
c>0

c−1Sa,b(m,m; c)Jk−1(
4πm

c
)

)
,

Applying (85) and (84) allows us to estimate32∑
f∈O

|af (m; a)|2 ≤ Ca,k,εm
k+ε (86)

for any ε > 0 (where Ca,k,ε > 0 is a constant depending on a, k and ε). This implies

|af (m; a)| ≤ Ca,k,εm
k
2

+ε, for f ∈ Sk(Γ, ϑ). We consider this to be the trivial bound.
(There are different ways to see this.)

32For example one can do so by splitting the c-sum at 4πm, apply a dyadic dissection to the
infinite part and use partial summation.
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While in general the Kloosterman sums Sa,b(m,n; c) can be very complicated
the situation gets a bit better when we are dealing with the Hecke congruence
subgroups. With our application to quadratic forms in mind we need to consider
Kloosterman sums for Γ0(2N) attached to the theta multiplier ϑth. One finds that
in this case

Sϑth
(m,n; c) := S∞,∞(m,n; c) = δ2N |c ·

∑
x mod c,
(x,c)=1

εx
k

(
det(A)2kck

x

)
· e
(
mx+ nx

c

)
.

(Recall that x denotes the inverse of x modulo c.)
For Kloosterman sums with theta multiplier we have the following improvement

over the trivial bound (86):

Theorem 4.2.2. For f ∈ S k
2
(Γ0(2N), ϑth) with k ≥ 5 we have

|af (m;∞)| ≤ Cf,εm
k
4
− 1

4
+ε. (87)

For all ε > 0 and some positive constant Cf,ε possibly depending on f (in particular
on k and N) and ε.

Proof. We start by proving a little auxiliary estimate:

1

r

∑
a mod r

|Sϑth
(am, am; r)|2 ≤ 4(m, r)rσ0(r). (88)

We can of course assume that 2N | r, since otherwise the statement is trivial.
Compute

1

r

∑
a mod r

|Sϑth
(am, am; r)|2

=
1

r

∑
a mod r

∑
x1,x2 mod r,
(x1x2,r)=1

εx1

kεkx2

(
det(A)2kck

x1

)(
det(A)2kck

x2

)
· e
(
am(x1 − x2) + am(x1 − x2)

c

)
(89)

Executing the a sum detects the condition

m(x1 + x1) ≡ m(x2 + x2) mod r.

Thus we get

1

r

∑
a mod r

|Sϑth
(am, am; r)|2

≤ ]{x1, x2 mod r : (x1x2, r) = 1 and m(x1 − x1)(x1x2 − 1) ≡ 0 mod r}.

The claim follows by counting solutions.
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Starting from (88) we can derive some useful estimates. Define

A(Q,R) =
∑
q≤Q

∑
r≤R,

(r,q)=1

|Sϑth
(qm, qm; r)|2,

B(Q,R) =
∑
q≤Q

∑
r≤R,

(r,q)=1

|Sϑth
(m,m; qr)|,

C(Q,R) =
∑
q≤Q

∑
r≤R

|Sϑth
(m,m; qr)| and

D(Q,R) =
∑
q≤Q

∑
r≤R

(qr)−1|Sϑth
(m,m; qr)|.

We first estimate

A(Q,R) ≤
∑
r≤R

(
Q

r
+ 1)

∑
a mod r

|Sϑth
(am, am; r)|2

≤
∑
r≤R

3(Q+ r)(m, r)rσ0(r) ≤ 4σ0(m)R2(Q+R) log(4R).

Next we observe that

|Sϑth
(m,m; qr)| = |S̃ϑth

(qm, qm; r)Sϑth
(rm, rm; q)|

as long as (q, r) = 1. Here S̃ϑth
is a Kloosterman sum with slightly modified

multiplier.33 Note however that the argument arriving at (88) was insensitive to
the exact form of the multiplier. Thus we can use Cauchy-Schwarz to estimate

B(Q,R) ≤ A(Q,R)
1
2 Ã(Q,R)

1
2 ≤ 4σ0(m)QR(Q+R) log(4QR).

Further we have

C(Q,R) ≤
∑
a≤Q

∑
b≤R

B(Q/a,R/b) ≤ 4σ0(m)QR(Q+R) log(4QR)2.

Finally using partial summation we arrive at

D(Q,R) ≤ τ(m)(Q+R) log(4QR)3. (90)

We can now proceed with the main part of the proof. First, without loss of gener-
ality we assume that f ∈ S k

2
(Γ0(2N), ϑth) has Petersson norm one (i.e. 〈f, f〉 = 1).

Then for each q with 2N | q we have

S k
2
(Γ0(2N), ϑth) ⊆ S k

2
(Γ0(q), ϑth).

Thus f is also an element in the (potentially) bigger space of cusp forms for Γ0(q)
(with respect to the theta multiplier). Note however that the Petersson norm

33We leave it as an exercise to work out the precise factorization properties. This requires
quadratic reciprocity and the Chinese remainder theorem.
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rescales when we change underlying group. Thus in the new space the norm of f
is now [Γ0(2N) : Γ0(q)]

1
2 . Applying Petersson’s formula (i.e. Theorem 2.5.10) we

obtain

Γ(k
2
− 1)

(4πm)
k
2
−1

|af (m;∞)|2

[Γ0(2N) : Γ0(q)]
≤ 1 + 2πi−

k
2

∑
c≡0 mod q

c−1Sϑth
(m,m, c)J k

2
−1(

4πm

c
).

Put m(Q) =
∑

Q<q≤2Q,
q≡0 mod 2N

[Γ0(2N) : Γ0(q)]. Summing both sides over Q < q ≤ Q

with q ≡ 2 mod N we get

m(Q)m−
k
2

+1|af (m;∞)|2

≤ Ck

(
Q+

∑
Q<q≤2Q

∞∑
r=1

(rq)−1

∣∣∣∣Sϑth
(m,m, rq)J k

2
−1

(
4πm

rq

)∣∣∣∣
)
.

We break the r-sum up into dyadic pieces R < r ≤ 2R. Using the estimate (85)
we get∑
Q<q≤2Q

∞∑
r=1

(rq)−1

∣∣∣∣Sϑth
(m,m, rq)J k

2
−1

(
4πm

rq

)∣∣∣∣ ≤ Q+min

(
(RQ)

1
2

m
1
2

,
m

QR

)
D(Q,R).

This can be effectively bounded using our Kloosterman sum estimate (90) above.
The worst case for the resulting inequality appears to be R = mQ−1. Thus we get
the bound

m(Q)m−
k
2

+1|af (m;∞)|2 ≤ Ck,ε(Q+mQ−1)mε.

Choosing Q = m
1
2 and observing that m(Q) is bounded from below yields the

desired result. �

Remark 4.2.3. The theorem above is only half of the truth. Indeed it is conjectured
that the better bound

|af (m;∞)| ≤ Cf,ε ·m
k
2
− 1

2
+ε, (91)

holds for all f ∈ S k
2
(Γ0(2N), ϑth) with k ≥ 1 that are not contained in a certain

subspace of theta functions.34 If k is even, then this actually follows from a deep
result due to Deligne resolving the Ramanujan Petersson conjecture for integral
weight modular forms.

4.3. Representation numbers and equidistribution. We are now ready to
apply the theory that was developed in this section to quadratic forms. The first
application concerns representation numbers of quadratic forms:

34For these theta functions the bound is known to be false, but they can only exist for odd k
(i.e. k/2 6∈ Z).
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Theorem 4.3.1. Let QA be a positive definite integral quadratic form in k ≥ 5
variables (i.e. A ∈ SPk). Then we have

r(n,QA) =
(2π)

k
2n

k
2
−1

Γ(k/2)
√

det(A)
·
∏
p

δp(n,A) +Of,ε(n
k
4
− 1

4
+ε).

Proof. We consider the theta series θ1,QA(z) ∈M k
2
(Γ0(2NA), ϑth) write it as

θ1,QA(z) = EQA(z) + FQA(z).

According to Siegel’s Theorem (i.e. Theorem 4.1.13) we have EQA(z) = θgen(QA)(z).
Thus, by comparing Fourier coefficients at infinity we have

r(n,QA) = r(n, gen(QA)) + aFQA (n;∞).

Since FQA(z) ∈ S k
2
(Γ0(2NA), ϑth) and k ≥ 5 we can use the bound (87) to obtain

r(n,QA) = r(n, gen(QA)) +On,ε(n
k
4
− 1

4
+ε).

We conclude by applying Theorem 4.1.6 to write

r(n, gen(QA)) = δ∞(n,A) ·
∏
p

δp(n,A).

Recall that according to (69) we have δ∞(n,A) = (2π)
k
2 n

k
2−1

Γ(k/2)
√

det(A)
. �

Some comments are in order. First, note that the same result can be obtained
using the circle method. Second, if k is even, then a better error term can be
achieved using the stronger bound (91) for the Fourier coefficients of cusp forms.
Finally, the result is only meaningful if the local densities δp(n,A) are sufficiently
well understood. In the setting of the theorem above this is no problem. Indeed,
it can be shown that for k ≥ 5 one has

CA ≤
∏
p

δp(n,A) ≤ C ′A for CA, C
′
A > 0 (92)

as long there is x ∈ Zk such that

QA(x) ≡ n mod 27 det(A)3.

Before moving on we will briefly comment on quadratic forms in few variables:

• If k = 2, then the approach above would naturally lead to the study of
modular forms of weight one. However, the product of local densities does
not converge absolutely in this case. More classically this case can be
approached using the connection between positive definite binary quadratic
forms and class numbers of imaginary quadratic fields.
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• The case k = 3 is very interesting but also very complicated. On the
algebraic side it becomes necessary to introduce the so called spinor genus.
Similarly the analytic theory has its complications. A detailed discussion
would ge beyond the scope of these notes.
• If k = 4 everything works essentially as above. The only difference is that

we can not apply (87) directly. Instead, since 4 is obviously even, one can
use the Ramanujan type bound (91). (For weight 2 = 4

2
this estimate was

actually established before Deligne by Eichler precisely for this purpose.)
Finally, also the treatment of δ2(n,A) is slightly more complicated.

We come to our second application. The goal is to show that the integral
solutions to QA(x) = n are distributed in the ellipsoid

EA(n) = {x ∈ Rk : QA(x) = n}.
We abbreviate EA(1) = EA. Given a (sufficiently nice) domain Ω ⊆ EA we consider

rΩ(n,QA) = ]{x ∈ Zk : QA(x) = n and
x√
n
∈ Ω}.

If n runs through a sequence of integers n with r(n,Q) 6= 0, then one expects that

rΩ(n,QA) ∼ Vol(Ω) · r(n,Q).

In this situation we say that the integral points on Q(x) = n are equidistributed
with respect to the invariant measure on EA.

Theorem 4.3.2. Let QA be a positive definite integral quadratic form in k ≥ 5
variables (i.e. A ∈ SPk). Let n→∞ run through a sequence of integers such that
the congruence

QA(x) ≡ n mod 27 det(A)3 (93)

has a solution x ∈ Zk. Then the integral points on Q(x) = n are equidistributed
with respect to the invariant measure on EA. We even have the quantitative state-
ment

rΩ(n,QA) = Vol(Ω) · r(n,Q) +OQA,Ω,ε(n
k−1

4
+ε) (94)

where the error term is significantly smaller than the main term.

Proof. We start by observing that it suffices to consider

rf (n,QA) =
∑

QA(x)=n

f(
m√
n

) for f ∈ C∞(EA)

instead of rΩ(n,QA). This is a standard approximation argument. Furthermore,
since the functions

{x 7→ Pl(Ax) : Pl harmonic polynomial of degree l} (95)

form a complete orthogonal system in L2(EA) it suffices to consider rf (n,QA) for
such f .
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We first treat the case when f is the constant function (i.e. f(x) = 1). In this
case we obviously have

rf (n,QA) = r(n,QA)

and there is nothing to do.

Second, if f(x) = Pl(Ax) for l ≥ 1, then n
l
2 rf (n,QA) is the Fourier coefficient

of θPl,QA(z) ∈ S k
2

+l(Γ0(2NA), ϑth). In particular, applying (87) gives

rf (n,QA) = Of,QA,ε(n
k
4
− 1

4
+ε)

in this case.
The two cases considered above give (94). To see that the main term is really a

main term we recall that

r(n,QA) = δ∞(n,A) ·
∏
p

δp(n,A) +OQA,ε(n
k
4
− 1

4
+ε).

According to our assumption (93) the product of local densities is bounded from

below by CA · n
k
2
−1. Since k ≥ 5 the latter is significantly bigger than the error

term. �

The assumption k ≥ 5 can be easily relaxed to include the case k = 4. The
case k = 3 on the other hand is way more complicated. Here a version of the
equidistribution statement remains true, but it is a deep theorem due to Duke.

5. Satz III: Hecke Operators

In many ways Hecke operators are the bridge between arithmetic and (com-
plex) analysis. A modern theory of modular forms without Hecke operators is
unthinkable.

Part of Hecke’s motivation to introduce these operators comes from the general
question which we will explain now.35 Given a sequence (an)n∈N of interesting
numbers (for example an = r(n,QA) with A ∈ SPk) we can do two natural36

things. First, we can associate the Dirichlet series

D(s) =
∑
n∈N

an
ns
.

Under some mild growth conditions on the numbers an this will converge in some
right half plane and define a holomorphic function there. Second, we can associate

f(z) =
∞∑
n=1

ane(nz).

35This is of course my own interpretation of what Hecke wrote. Unfortunately I do not really
know what Hecke was thinking.

36At least from the point of view of an analytic number theorist such as Hecke.
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Again this defines a function on H as soon as the numbers an are well behaved.37

Formally, ignoring convergence issues for now, we can relate these two objects by
taking the Mellin transform

[Mf ](s) =

∫ ∞
0

f(iy)ys
dy

y
=
∞∑
n=1

an

∫ ∞
0

e−2πnyys−1dy = (2π)−sΓ(s)D(s).

Thus morally f(z) and D(s) are two sides of the same coin. In particular, proper-
ties of f should be reflected by corresponding properties of D and vice versa.

Of special interest are Dirichlet series with Euler product:

D(s) =
∑
p prime

∞∑
k=1

apkp
−ks.

Such a product representations holds (in the region of absolute convergence) pre-
cisely when anm = anam for (n,m) = 1 (i.e. when the coefficients an are multi-
plicative). Examples are given by

• If an = 1 for all n ∈ N, then the corresponding Dirichlet series is precisely
the Riemann zeta function D(s) = ζ(s) with the product representation

ζ(s) =
∏

p prime

1

1− p−s
for Re(s) > 1,

which is the mother of all Euler products.
• If an = 1

8
r4(n), then

D(s) =
1

8

∞∑
n=1

r4(n)n−1 =
∞∑
n=1

σ1(n)n−s −
∞∑
n=1

σ1(n)(4n)−s

= (1− 41−s)ζ(s)ζ(1− s) =
1 + 21−s

1− 2−s
·

∏
p odd prime

(1− (1 + p)p−s + pp−2s)−1

for Re(s) > 2

where we used Jacobi’s Four Square Theorem.
• For arbitrary A ∈ SPk and an = r(n,QA) there is no reason to expect

that D(s) has an Euler Product.

In general we would like to decompose a Dirichlet series D(s) into pieces with
Euler product:

D(s) = b1D1(s) + . . .+ brDr(s), (96)

where Di(s) are associated to multiplicative sequences (a
(i)
n )n∈N. Even more, we

would like to do this by decomposing f(z) in a purely function theoretic way. This

37Note that for general an there is no reason to expect that this is actually (related to) a
modular form. But in our example an = r(n,Q) we have f(z) = θ1,Q(z)− 1.
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goal is achieved by the theory of Hecke Operators as soon as the sequence an can
be described via Fourier coefficients of modular forms.38

We now give a basic example where the decomposition (96) of D(s) is classically
well known. Re-interpreting this decomposition on the function theoretic side (i.e.
for f(z)) will lead us to some very suggestive operators.

Let D < −4 be a fundamental discriminant (i.e. D ≡ 1 mod 4 square-free or
D = 4D′ with D′ ≡ 2, 3 mod 4 square-free). Then D is the discriminant of the

imaginary quadratic number field K = Q(
√
D). Let OK be the ring of integers in

K. Since we are assuming D < −4 we have ]O×K = {±1}. We denote the ideal
class group of K by CK . This is a finite abelian group and we define the class
number of K by hK = ]CK . Given an integral ideal a ⊆ OK we write [a] for the
corresponding class in CK .

The Dedekind zeta function of K is defined as

ζK(s) =
∑
a⊆OK

[]OK/a]−s =
∞∑
n=1

]{a ⊆ OK : ]OK/a = n}︸ ︷︷ ︸
=aK(n)

n−s.

It makes sense to consider the partial zeta functions

ζK(s, [b]) =
∑

a⊆OK ,
[a]=[b]

[]OK/a]−s =
∞∑
n=1

]{a ⊆ OK : ]OK/a = n, [a] = [b]}︸ ︷︷ ︸
=aK(n,[b])

n−s.

Of course we have ζK(s) =
∑

[b]∈CK ζK(s, [b]). All these zeta functions are holo-
morphic in some right half plane and posses a meromorphic continuation to the
complex plane. While ζK(s) has an Euler Product similar to the one of the Rie-
mann Zeta Function, the partial zeta functions are not eulerian in general.

To each ideal class [a] ∈ CK we can associate a integral positive definite binary
quadratic form

Qa(x, y) =
NrK|Q(αx+ βy)

]OK/a
where a = Zα + Zβ

of discriminant D. Similarly we can take an integral positive definite binary qua-
dratic form Q(x, y) = ax2 + bxy + cy2 of discriminant D and associate the ideal
class [aQ] ∈ CK given by

aQ = Z +
b+
√
D

2a
· Z.

This gives us a bijection between the ideal class group CK of K and the set of equiv-
alence classes of positive definite integral binary quadratic forms of discriminant
D. Under this correspondence we have

r(n,Q) = 2 · aK(n, [aQ]).

38Of course such sequences an form only a small sample of all interesting sequences, but a
sufficiently interesting one.
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In particular, if DQ(s) denotes the Dirichlet series associated to the sequence
(1

2
r(n,Q))n∈N, then we have

DQ(s) = ζK(s, [aQ]).

On the other hand, we have

fQ(z) =
1

2
+

1

2

∑
n∈N

r(n,Q)e(nz) =
1

2
· θ1,Q(z) ∈M1(Γ0(D), χD).

On the level of Dirichlet series it is well known how to expand the partial zeta
functions into Dirichlet Series with Euler Product. To do so we take a character
χ ∈ ĈK (i.e. a homomorphism χ : CK → S1) and associate

Dχ(s) =
∑
a⊆OK

χ([a])(]OK/a)−s.

(One could also write Dχ(s) = ζK(s, χ), but non of this is standard notation!)
Using elementary facts on the splitting behavior of primes in the extension K|Q
one obtains the Euler Product

Dχ(s) =
∏

p prime

(1− λχ(p)p−s + χD(p)p−2s)−1,

with

λχ(p) =


χ([p]) + χ(p)−1 if (p)OK = p · p′,
0 if (p)OK = p and

χ(p) if (p)OK = p2.

Note that the functions Dχ(s) also have a meromorphic continuation and satisfy
a functional equation. In particular, if χ = 1 is the trivial character, then we have
D1(s) = ζK(s).

Using character orthogonality we write

DQ(s) =
1

hK

∑
χ∈ĈK

χ([a]Q)−1Dχ(s).

This achieves our goal to decompose DQ into eulerian Dirichlet Series. But the
procedure is somehow unsatisfying because in general there will be no (abelian)
group like CK in the background that allows us to play this trick. Thus we will
take a closer look at what happens on the modular side. We define the functions

fχ(z) =
h

2
δχ=1 +

∑
a⊆OK

χ([a])e(]OK/a · z).

These are of course precisely the functions on H that correspond to the Dirichlet
series Dχ with Euler Product! Then we have fχ(z) ∈ M1(Γ0(D), χD). Indeed we
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can compute

fχ(z) =
∑

[b]∈CK

χ([b])ζK(s, [b]) =
∑

[aQ]∈CK

χ([aQ])fQ(z).

This shows that fχ(z) is a linear combination of the classical theta functions
fQ(z) = 1

2
θ1,Q(z). Of course we also have

fQ(z) =
1

h

∑
χ∈ĈK

χ([aQ])−1fχ(z).

For a (rational) prime p with (p)OK = p · p′ we make the following ad-hoc39

observation:∑
a⊆OK ,
[a]=[b]

]OK/a≡0 mod p

(]OK/a)−s =
∑

a⊆OK ,
[a]=[b]
p|a

(]OK/a)−s +
∑

a⊆OK ,
[a]=[b]
p′|a

(]OK/a)−s −
∑

a⊆OK ,
[a]=[b]

(p)OK |a

(]OK/a)−s

= p−sζK(s, [bp]) + p−sζK(s, [bp′])− p−2sζK(s, [b]).

Rewriting this (and treating the cases (p)OK = p and (p)OK = p2 similarly) yields

χD(p)p−sζK(s, [b]) + ps
∑

a⊆OK ,
[a]=[b]

]OK/a≡0 mod p

(]OK/a)−s

=


ζK(s, [bp]) + ζK(s, [bp′]) if (p)OK = pp′,

0 if (p)OK = p and

ζK(s, [bp]) if (p)OK = p2.

(97)

Write b = aQ. Note that the left hand side of (97) consists only of data that is
known by fQ. Thus we would like to interpret it as the Fourier coefficient of a
function associated to fQ. To do se we first write

χD(p)p−sζK(s, [b]) + ps
∑

a⊆OK ,
[a]=[b]

]OK/a≡0 mod p

(]OK/a)−s

=
∞∑
n=1

(
χD(p)δp|naK(n/p, [aQ]) + aK(pn, [aQ])

)
n−s

=
χD(p)

2

∞∑
n=1

δp|nr(n,Q)n−s +
1

2p

p−1∑
l=0

∞∑
n=1

e(
nl

p
)r(n,Q)(n/p)−s.

39Recall that we are trying do decompose the Dirichlet series ζ(s, [b]) into pieces with Euler
product. Thus it makes sense to test how this function changes when a divisibility condition is
introduced.
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The coefficients of the Dirichlet series in the last line are easily recognized as the
Fourier coefficients of

[TpfQ](z) := χD(p)fQ(pz) +
1

p

p−1∑
l=0

f

(
z + l

p

)
.

If we now also set bp = aQ1 and bp′ = aQ2 , then (97) translates into

[TpfQ](z) =


fQ1(z) + fQ2(z) if (p)OK = pp′,

0 if (p)OK = p and

fQ1(z) if (p)OK = p2.

In particular the operator Tp acts on the space

T (D) = 〈fQ : Q with discriminant D〉C ⊆M1(Γ0(D), χD).

It turns out that the functions {fχ : χ ∈ ĈK} form a basis of T (D). Even more the
functions fχ are eigenfunctions of all the operators Tp:

[Tpfχ](z) = λχ(p) · fχ(z).

Therefore, we recover the functions fχ, which correspond to the eulerian Dirich-
let series Dχ, by simultaneously diagonalizing the family {Tp : p prime} of linear
operators on T (D). Note that the operators Tp are ultimately defined without
any reference to binary quadratic forms (or ideal classes). Thus they are purely
function theoretic objects. In particular they provide us with a more satisfying
explanation of the decomposition (96) for DQ, which might generalize beyond the
example of binary quadratic forms.

In general we guess that the operators Tp for (p,N) = 1 defined by

[Tpf ](z) = pk−1χ(p)f(pz) +
1

p

p−1∑
l=0

f

(
z + l

p

)
(98)

define a nice family of (linear) operators on Sk(Γ0(N), χ). Here k,N ∈ N and χ is
a Dirichlet character modulo N . We will now develop a general theory of Hecke
operators to make this more precise.

5.1. Double co-sets and Hecke algebras. We start with some general defini-
tions and observations. Throughout this section G is a general group (but we can
keep G = GL+

2 (R) = {g ∈ GL2(R) : det(g) > 0} in the back of our head).

Definition 5.1.1. Let G be a group with two subgroups Γ1,Γ2 ⊆ G. Then Γ1

and Γ2 are said to be commensurable if

[Γ1 : Γ1 ∩ Γ2] <∞ and [Γ2 : Γ1 ∩ Γ2] <∞.
We write Γ1 ∼ Γ2.

It can be seen that the relation Γ1 ∼ Γ2 defines an equivalence relation on
subgroups of G.
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Definition 5.1.2. For a subgroup Γ ⊆ G of a group G we define the commensu-

rator Γ̃ of Γ in G by

Γ̃ = {g ∈ G : gΓg−1 is commensurable with Γ}.

The commensurator Γ̃ of a subgroup Γ turns out to be a subgroup of G. Note

that Γ̃ heavily depends on the ambient group G. One can also see that Γ1 ∼ Γ2

implies Γ̃1 = Γ̃2.

Example 5.1.1. If Γ ⊆ SL2(Z) is a congruence subgroup and α ∈ GL+
2 (Q), then

Γ and α−1Γα are commensurable.

Proof. Since Γ is a congruence subgroup there is q such that

Γ(q) = ker(SL2(Z)→ SL2(Z/qZ)) ⊆ Γ.

It suffices to show that there is q′ such that Γ(q′) ⊆ α−1Γα. Indeed this implies
that Γ(qq′) ⊆ Γ ∩ α−1Γα and Γ(qq′) has finite index in Γ and α−1Γα.

To see the claim we can take q′ such that q′α−1τα ∈ Mat2×2(qZ) for all τ ∈
Mat2×2(Z). Then αΓ(q′)α−1 ⊆ Γ(q) ⊆ Γ so that Γ(q′) ⊆ α−1Γα. �

Exercise 3, Sheet 9: Let G be a group. For two subgroups Γ1,Γ2 recall what
it means for Γ1 and Γ2 to be commensurable. Further, recall the definition of the
commensurator Γ̃1 of Γ1 in G.

a) Show that being commensurable defines an equivalence relation on sub-
groups of G.

b) Let Γ ⊂ G be a subgroup. Show that Γ̃, the commensurator of Γ in G, is
a subgroup of G.

c) Let G = GL+
2 (R) and let Γ = SL2(Z). Compute the commensurator of Γ

in G.

Solution. For a), the only nontrivial part is transitivity. That is, if Γ1 ∼ Γ2 and
Γ2 ∼ Γ3 then we need to show that Γ1 ∼ Γ3. The assumptions are that Γ1∩Γ2\Γ1,
Γ1 ∩ Γ2\Γ2, Γ2 ∩ Γ3\Γ2 and Γ2 ∩ Γ3\Γ3 are finite sets. We claim that the natural
inclusion Γ1 ∩ Γ2 ↪→ Γ2 induces an injection

Γ1 ∩ Γ2 ∩ Γ3\Γ1 ∩ Γ2 ↪→ Γ2 ∩ Γ3\Γ2.

Indeed, if γ1, γ2 ∈ Γ1 ∩ Γ2 satisfy γ1γ
−1
2 ∈ Γ2 ∩ Γ3, then automatically, γ1γ

−1
2 ∈

Γ1∩Γ2∩Γ3 from which Γ1∩Γ2∩Γ3γ1 = Γ1∩Γ2∩Γ3γ2. We also need the observa-
tion that, if K ⊂ H is finite index and H ⊂ G is also finite index, then K ⊂ G is
finite index. This follows by considering H =

⊔
Khi and G =

⊔
Hgj and noticing

that G =
⊔
Khigj, so that in fact [K : G] = [K : H][H : G]. Putting together the

two observations, we get that Γ1 ∩ Γ2 ∩ Γ3 is of finite index in Γ1 as well as in Γ3,
which means that Γ1 ∼ Γ3, as desired.
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For part b), we employ the following observation: if H is finite index in G and
θ : G → θ(G) is an isomorphism, then θ(H) is finite index in θ(G). As a con-
sequence, if Γ1 ∼ Γ2 and θ is an automorphism of G, then θ(Γ1) ∼ θ(Γ2). Let
g ∈ Γ̃. Then gΓg−1 ∩ Γ is a subgroup of finite index in both Γ and gΓg−1. Ap-
plying the automorphism x 7→ g−1xg, we obtain that Γ ∩ g−1Γg is of finite index
in both g−1Γg and Γ, showing that g ∈ Γ̃ iff g−1 ∈ Γ̃. Also, if g1, g2 ∈ Γ̃, then
Γ ∼ g1Γg−1

1 and Γ ∼ g2Γg−1
2 . Applying x 7→ g1xg

−1
1 to this last equivalence, we

obtain g1Γg−1
1 ∼ g1g2Γg−1

2 g−1
1 . By transitivity, we arrive at Γ ∼ g1g2Γg−1

2 g−1
1 , that

is, g1g2 ∈ Γ̃.

For part c), we show that Γ̃ = Z(G) GL+
2 (Q), where Z(G) is the subgroup

of real valued scalar matrices. It is shown in example 5.1.1 of the lectures that
GL+

2 (Q) ⊂ Γ̃, and it is clear that Z(G) ⊂ Γ̃ as well, since conjugating by a scalar
matrix leaves every matrix fixed. For the opposite direction, assume that g ∈ Γ̃.
We will show that gM2(Q)g−1 = M2(Q).

We need the following observation: if H ⊂ Γ = SL2(Z) is of finite index, then
Q[H] = Q[Γ] = M2(Q), where we write Q[H] for the subalgebra of M2(C) gener-
ated by the elements of H over Q. Indeed, suppose H ⊂ Γ is of finite index and let
g ∈ Γ. We have an induced action on cosets Hγ 7→ Hγg, and since the set of cosets
is finite, there is a power of g that acts like the identity, say gN . In particular,

HgN = H, so that gN ∈ H. Letting g =

(
1 1
0 1

)
and

(
1 0
1 1

)
respectively, we see

that there are positive integers N,M such that

TN =

(
1 N
0 1

)
∈ H and UM =

(
1 0
M 1

)
∈ H

Considering TN − UM = Ne1,2 −Me2,1 and also TN − U−M = Ne1,2 +Me2,1, we
deduce that e1,2, e2,1 ∈ Q[H]. Also, we have

TNUM =

(
1 N
0 1

)(
1 0
M 1

)
=

(
1 +NM N

M 1

)
∈ H

and therefore diag(1 + NM, 1) ∈ Q[H]. Similarly, diag(1, 1 + NM) ∈ Q[H], from
which it follows that e1,1, e2,2 ∈ Q[H]. Putting all together, we have proved that
Q[H] = Q[Γ] = M2(Q).

Now, consider g ∈ Γ̃. We know that gΓg−1 ∩ Γ is a finite index subgroup of Γ
and of gΓg−1. From the first fact, we deduce that Q[gΓg−1 ∩ Γ] = M2(Q). After
applying x 7→ g−1xg, since g−1 (gΓg−1 ∩ Γ) g is of finite index in Γ as well, we have
Q[g−1 (gΓg−1 ∩ Γ) g] = M2(Q). But since g−1Q[H]g = Q[g−1Hg] for any subgroup
H ⊂ G, we deduce that g−1M2(Q)g = M2(Q), as desired.
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Finally, using that ge1,1g
−1, ge1,2g

−1, ge2,1g
−1 and ge2,2g

−1 are all in M2(Q), we
obtain xixj/ det(g) ∈ Q, for any choice xi, xj ∈ {a, b, c, d}, the entries of g. After
dividing each entry by the square root of the determinant we can assume that
det(g) ∈ Q, so xixj ∈ Q for any choice xi, xj ∈ {a, b, c, d}. Suppose, for example,
that a 6= 0. Then after multiplying g by a we arrive at a matrix with rational
entries, as desired. �

Lemma 5.1.2. Let Γ1,Γ2 ⊆ G be two commensurable subgroup of a group, let

α ∈ Γ̃1 (i.e. Γ and α−1Γα are commensurable). Then we can write

Γ1αΓ2 =
r⊔
i=1

Γ2αγi =
s⊔
j=1

δjαΓ2,

where (γi)i=1,...,r (resp. (δj)j=1,...,s) is a full set of representatives for (Γ2∩α−1Γ1α)\Γ2

(resp. Γ1/(Γ1 ∩ α−1Γ2α)).

Proof. This is elementary. One first notes that each right coset of Γ1 in Γ1αΓ2 can
be written as

Γ1αγ ⊆ Γ1αΓ2 for γ ∈ Γ2.

Now Γ1αγ = Γ1αγ
′ if and only if γ′γ−1 ∈ Γ2 ∩ α−1Γ1α. One concludes by noting

that since α−1Γ1α ∼ Γ1 ∼ Γ2 the index [Γ2 : Γ2 ∩ α−1Γ1α] is finite. �

We now fix a semigroup ∆ ⊆ G. By C(∆) we denote the collection of mutually
commensurable subgroups Γ ⊆ G such that

Γ ⊆ ∆ ⊆ Γ̃.

Further let R be a commutative ring with identity. (For concreteness we could take
R = Z, but there is no harm in working more generally for now.) For Γ1,Γ2 ∈ C(∆)
we put

HR(Γ1,Γ2; ∆) = 〈Γ1αΓ2 : α ∈ ∆〉R.
This is the free R-module generated by the double co-sets Γ1αΓ2 with α ∈ ∆. In
particular, elements are formal sums of the form

η =
∑
α∈∆

cα · Γ1αΓ2,

where cα ∈ R is zero for all but finitely many α.
The degree of a double co-set Γ1αΓ2 is defined to be the number of right Γ1

co-sets contained in it:

deg(Γ1αΓ2) = [Γ2 : Γ2 ∩ α−1Γ1α].

We extend the degree to a map deg : HR(Γ1,Γ2; ∆)→ R by setting

deg(η) =
∑
α

cα · deg(Γ1αΓ2).
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Given an R-module M and suppose that ∆ ⊆ G acts on M from the right:

M ×∆ 3 (m,α) 7→ m · α ∈M.

(This action should of course satisfy m · 1 = m and m · (α1α2) = (m ·α1) ·α2.) For
Γ ∈ C(∆), we can define the submodule

MΓ = {m ∈M : m · γ = m for all γ ∈ Γ}.
On this space we can define the action of a double co-set as follows. Take Γ1αΓ2 =⊔d
i=1 Γαi and define

m|Γ1αΓ2 =
d∑
i=1

m · αi.

We extend this linearly to an action m|η for η ∈ HR(Γ1,Γ2; ∆).

Lemma 5.1.3. Let m ∈MΓ1 and η ∈ HR(Γ1,Γ2; ∆). Then operation m|η is well
defined and we have m|η ∈MΓ2.

Proof. Clear. �

Given Γ1,Γ2,Γ3 ∈ C(∆) and η1 ∈ HR(Γ1,Γ2; ∆) and η2 ∈ HR(Γ2,Γ3; ∆) we
want to define the product η1 · η2 ∈ HR(Γ1,Γ3; ∆). Of course it suffices to define
the product on double co-sets Γ1αΓ2 and Γ2βΓ3 with α, β ∈ ∆ and then extend it
linearly. We put

(Γ1αΓ2)(Γ2βΓ3) =
∑
γ∈∆

cγΓ1γΓ3,

where
cγ = ]{(i, j) : Γ1αiβj = Γ1γ}. (99)

Remark 5.1.4. Let M = R(Γ1\∆) be the free R-module generated by right Γ1

co-sets Γ1α with α ∈ ∆. The semigroup ∆ acts on M in the obvious way by right
multiplication. Furthermore, we can embed

HR(Γ1,Γ2; ∆)→ R(Γ1\∆),Γ1αΓ2 =
⊔
i

Γ1αi 7→
∑
i

Γ1αi.

Using this embedding we have the identification

HR(Γ1,Γ2; ∆) = R(Γ1\∆)Γ2 .

We compute

(Γ1αΓ2)|(Γ2βΓ3) =
r∑
i=1

Γ1αi|(Γ2βΓ3)

=
r∑
i=1

s∑
j=1

Γ1αiβj

=
∑
γ

cγ · Γ1γ ∈ R(Γ1\∆)Γ3 .
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Now, for each γ ∈ ∆ we write

Γ1γΓ3 =

deg(Γ1γΓ3)⊔
k=1

Γ1γk

and we note that cγk = cγ. Thus we can write

(Γ1αΓ2)|(Γ2βΓ3) =
∑

Γ1γΓ3

cγ

deg(Γ1γΓ3)∑
k=1

Γ1γk =
∑
γ

cγΓ1γΓ3 ∈ HR(Γ1,Γ2; ∆).

In the last equality we have reversed the identification between HR(Γ1,Γ2; ∆) and
R(Γ1∆)Γ3 . Thus we find

(Γ1αΓ2) · (Γ2βΓ3) = (Γ1αΓ2)|(Γ2βΓ3).

Thus we have defined a bilinear pairing

HR(Γ1,Γ2; ∆)×HR(Γ2,Γ3; ∆)→ HR(Γ1,Γ3; ∆), (η1, η2) 7→ η1 · η2

and under the identification HR(Γ1,Γi; ∆) = R(Γ1\∆)Γi (with i = 2, 3) we get

η1 · η2 = η1|η2.

We directly obtain that (η1 · η2) · η3 = η1 · (η2 · η3).

Lemma 5.1.5. Given Γ1αΓ2 and Γ2βΓ3 as above. Then we have

cγ · deg(Γ1γΓ3) = ]{(i, j) : Γ1αiβjΓ3 = Γ1γΓ3}.

Proof. Suppose Γ1γΓ3 =
⊔t
k=1 Γ1γk. In particular, deg(γ) = t. Then we have

Γ1αiβjΓ4 = Γ1γΓ3 if and only if Γ1αiβj = Γ1γk for exactly one 1 ≤ k ≤ t. We
conclude by observing that

]{(i, j) : Γ1αiβjΓ3 = Γ1γΓ3} =
t∑

k=1

]{(i, j) : Γ1αiβj = Γ1γk}

= t · ]{(i, j) : Γ1αiβj = Γ1γ} = t · cγ.
�

Lemma 5.1.6. If η1 ∈ HR(Γ1,Γ2; ∆) and η2 ∈ HR(Γ2,Γ3; ∆), then

det(η1 · η2) = deg(η1) · deg(η2).

Proof. It is sufficient to check this for generators Γ1αΓ2 and Γ2βΓ3 of the respective
algebras. We compute

deg(Γ1αΓ2 · Γ2βΓ3) =
∑
γ

cγ deg(Γ1γΓ3)

=
∑
γ

]{(i, j) : Γ1αiβjΓ3 = Γ1γΓ3}

= ]{(i, j)} = deg(Γ1αΓ2) · deg(Γ2αΓ3).
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�

Definition 5.1.3. We call

H(Γ; ∆) = HZ(Γ,Γ; ∆)

the Hecke algebra of Γ (over Z) with respect to ∆.

Remark 5.1.7. If ∆ ⊆ ∆′ and Γ ∈ C(∆′), then H(Γ,∆) is a subalgebra of H(Γ; ∆′).

Proposition 5.1.8. Let α ∈ Γ̃ and suppose that40

ΓαΓ =
d⊔
i=1

Γαi =
d⊔
j=1

βjΓ.

Then we can find representatives δi that simultaneously work for left and right
co-sets:

ΓαΓ =
d⊔
i=1

Γδi =
d⊔
i=1

δiΓ.

Proof. We claim that Γαi ∩ βjΓ 6= ∅ for all tuples (i, j). Indeed assuming the
contrary we find indices i and j such that

Γαi ⊆
⊔
k 6=j

βkΓ.

This implies

ΓαΓ = ΓαiΓ =
⊔
k 6=j

βkΓ,

which is a contradiction.
With the claim established we can simply replace αi and βi by some δi ∈ Γαi ∩

βiΓ 6= ∅. �

For us an involution on ∆ is a map (·)ι : ∆→ ∆ such that

(αβ)ι = βιαι and αιι = α.

Theorem 5.1.9 (Gelfand’s Trick). Suppose there is an involution ι : ∆→ ∆ such
that

Γι = Γ and ΓαιΓ = ΓαΓ for all α ∈ ∆.

Then HR(Γ; ∆) is commutative.

Proof. Let α, β ∈ ∆. We first write

ΓαΓ =
d⊔
i=1

Γαi

40The point in this assumption is that in both expansions we need the same number of
representatives.
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and we observe that by assumption on ι we have

ΓαΓ = ΓαιΓ = (ΓαΓ)ι =
d⊔
i=1

αιiΓ.

Thus the assumption of the previous proposition is satisfied and we can pick αi
such that

ΓαΓ =
d⊔
i=1

Γαi =
d⊔
i=1

αiΓ.

Similarly we can write

ΓβΓ =
d⊔
i=1

Γβi =
d⊔
i=1

βiΓ.

Recall that

ΓαΓ · ΓβΓ =
∑
γ

cγΓγΓ.

Now we compute

cγ = ]{(i, j) : Γαiβj = Γγ}

=
1

deg(ΓγΓ)
]{(i, j) : ΓαiβjΓ = ΓγΓ}

=
1

deg(ΓγΓ)
]{(i, j) : Γβιjα

ι
iΓ = ΓγΓ}

= ]{(i, j) : Γβιjα
ι
i = Γγ} =: c′γ (100)

Combining everything we get

ΓαΓ · ΓβΓ =
∑
γ

cγ · ΓγΓ =
∑
γ

c′γ · ΓγΓ = ΓβιΓ · ΓαιΓ = ΓβΓ · ΓαΓ.

This completes the proof. �

Example 5.1.10. Let Γ = SLn(Z), G = GL+
n (Q) and

∆ = {α ∈ Matn×n(Z) : det(α) > 0}.

Then we have the involution α 7→ αt. This obviously leaves Γ invariant. Further-
more, by the elementary divisor theorem we can write

ΓαΓ = ΓαdΓ

for some diagonal matrix αd = diag(d1, . . . , dn) with di ∈ N so that di | di+1. We
check

ΓαtΓ = (ΓαΓ)t = (ΓαdΓ)t = ΓαtdΓ = ΓαdΓ = ΓαΓ.

Thus we can apply Gelfand’s Trick to show that H(Γ,∆) is commutative.
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Exercise 1, Sheet 10: Let Γ1,Γ2 ⊂ SL2(R) be two discrete subgroups of finite
co-volume. Let k ∈ R and let ϑi be a multiplier system for Γi of weight k (with
i = 1, 2). On the intersection Λ = Γ1 ∩ Γ2 the product

ξ(γ) = ϑ1(γ)ϑ2(γ)−1

defines a character and we assume that the kernel E = ker(ξ) ⊂ Λ has finite index
in Γ2.

a) Let f ∈Mk(Γ1, ϑ1). Show that

g(z) =
∑

α∈E\Γ2

ϑ2(α)−1[f |k α](z)

is well-defined and that we have g ∈Mk(Γ2, ϑ2).
b) Show that if [Λ : E] > 1, then g = 0.

Solution. To see that g is well-defined, let β = εα, where ε ∈ E. Observe
that [f |kεα] = [[f |kε]|kα]wk(ε, α), where wk is the factor system of weight k; see
Definition 2.2.1. Also, by definition of multiplier system of weight k we have
ϑ2(εα) = ϑ2(ε)ϑ2(α)wk(ε, α). Since f ∈ Mk(Γ1, ϑ1) we have [f |kε] = ϑ1(ε)f , and
from the definition of E, ϑ1(ε) = ϑ2(ε). These observations justify the following
calculation:

ϑ2(εα)−1[f |kεα] = ϑ2(εα)−1ϑ2(α)ϑ2(α)−1[[f |kε]|kα]wk(ε, α)

= ϑ2(εα)−1ϑ2(α)ϑ2(α)−1ϑ1(ε)wk(ε, α)[f |kα]

= ϑ2(εα)−1ϑ2(α)ϑ2(α)−1ϑ2(ε)wk(ε, α)[f |kα]

= ϑ2(α)−1[f |kα].

Therefore, g is well-defined. To show that g ∈Mk(Γ2, ϑ2), observe that multiplying
on the right by γ ∈ Γ2 permutes the right cosets E\Γ2. We get

g(z) =
∑

α∈E\Γ2

ϑ2(αγ)−1[f |kαγ](z) =
∑

α∈E\Γ2

ϑ2(α)−1ϑ2(α)ϑ2(αγ)−1[[f |kα]|kγ]wk(α, γ)

= ϑ2(γ)−1[g|kγ]

as desired (we have used that ϑ2(αγ) = ϑ2(α)ϑ2(γ)wk(α, γ), valid since ϑ2 is a
multiplier system of weight k for Γ2).
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For part b), let γ ∈ Λ = Γ1 ∩ Γ2. we calculate

[g|kγ] =
∑

α∈E\Γ2

ϑ2(α)−1[[f |kα]|kγ] =
∑

α∈E\Γ2

ϑ2(α)−1wk(α, γ)−1[f |kαγ]

=
∑

α∈E\Γ2

ϑ2(α)−1wk(α, γ)−1wk(γ, γ
−1αγ)[[f |kγ]|kγ−1αγ]

= ϑ1(γ)
∑

α∈E\Γ2

ϑ2(α)−1wk(α, γ)−1wk(γ, γ
−1αγ)[f |kγ−1αγ].

Now, observe that x 7→ γ−1xγ is an automorphism of Γ2, and since γ ∈ Λ = Γ1∩Γ2,
this conjugation normalizes E. Therefore, α 7→ γ−1αγ induces a bijection of E\Γ2.
Also, we have the identities

ϑ2(αγ) = ϑ2(α)ϑ2(γ)wk(α, γ) and ϑ2(αγ) = ϑ2(γ)ϑ2(γ−1αγ)wk(γ, γ
−1αγ)

which imply

ϑ2(α)−1wk(α, γ)−1wk(γ, γ
−1αγ)ϑ2(γ−1αγ) = 1.

Therefore, we arrive at

[g|kγ] = ϑ1(γ)
∑

α∈E\Γ2

ϑ2(α)−1wk(α, γ)−1wk(γ, γ
−1αγ)[f |kγ−1αγ]

= ϑ1(γ)
∑

α∈E\Γ2

ϑ2(γ−1αγ)−1[f |kγ−1αγ]

= ϑ1(γ)g.

Finally, if [Λ : E] > 1, we can choose γ ∈ Λ such that ϑ1(γ) 6= ϑ2(γ), and then

ϑ1(γ)g = [g|kγ] = ϑ2(γ)g

which implies g ≡ 0. �

Exercise 3, Sheet 10: Let G be a finite group and let H ⊂ G be a subgroup.
Let π be an irreducible representation of G on some (finite dimensional) C-vector
space V . In particular, we have the action

v · g := π(g−1)v for g ∈ G and v ∈ V.

Thus we have an action of HC(H,G) on V H given by v|η, where v ∈ V and
η ∈ HC(H,G). (See Lemma 5.1.3.)

a) Realize the Hecke algebra as EndG(C[H\G]).
b) Prove that the following are equivalent:

i) The Hecke algebra HC(H,G) is commutative.
ii) Every irreducible representation contains up to scalars at most one

H-fixed vector.
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Solution. Recall Frobenius Reciprocity: If (U, σ) and (V, τ) are representations of
H and G respectively, then

HomG(V, IndGH(U)) ' HomH(V |H , U).

By IndGH(U) we mean a induced representation, with underlying space

IndGH(U) := {f : G→ U | f(hg) = σ(h)f(g) for all h ∈ H, g ∈ G}.

The action of G on IndGH(U) is by right translation. That is, we have

(g · f)(x) = f(xg) for f ∈ IndGH(U), x, g ∈ G.

The bijection in Frobenius reciprocity is defined as follows. To Φ ∈ HomG(V, IndGH(U))
we associate φ ∈ HomH(V |H , U) such that φ(v) := Φ(v)(1). In the other di-
rection, to φ ∈ HomH(V |H , U) we associate Φ ∈ HomG(V, IndGH(U)) such that
Φ(v)(g) := φ(gv). It is a simple computation (although a bit tedious) to check
that the two maps above are inverse to each other and have the desired transfor-
mation behaviour. We will be concerned with C[H\G] := IndGH(1), where 1 is the
trivial one-dimensional representation of H. Therefore,

C[H\G] = {f : G→ C | f(hg) = f(g) for all h ∈ H, g ∈ G}.
By Frobenius reciprocity we have a bijection

HomG(W,C[H\G]) ' HomH(WH , 1) (101)

for any G-representation W . We want to see that EndG(C[H\G]) ' C(H,G).
There is a canonical basis of C[H\G], consisting of the characteristic functions
δHg. The action of G on this basis is described as x · δHg = δHgx−1 . Also, Φ ∈
EndG(C[H\G]) is uniquely determined by Φ(δH), since Φ(δHg) = Φ(g−1δH) =
g−1Φ(δH). Write

Φ(δH) =
∑

g∈H\G

aHgδHg.

Since H fixes δH , we must have∑
g∈H\G

aHgδHg = Φ(δH) = Φ(h·δH) =
∑

g∈H\G

aHgh·δHg =
∑

g∈H\G

aHgδHgh−1 =
∑

g∈H\G

aHghδHg.

It follows that aHg = aHgh for any h ∈ H, and thus we can write

Φ(δH) =
∑

g∈H\G/H

aHgHδHgH .

Reciprocally, any such expression corresponds to a well-defined endomorphism of
C[H\G]. Indeed, we only need to check that the expression Φ(δHg) := g−1 ·Φ(δH)
is well-defined. To see this, note that Hg = Hx implies xg−1 ∈ H, which stabilizes
Φ(δH). We check that

g−1 · Φ(δH) = x−1
(
·(xg−1) · Φ(δH)

)
= x−1Φ(δH).
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Therefore, we have established a bijection of HC(H,G) with C[H\G], which sends
the double coset HgH to Φg ∈ C[H\G] defined by Φg(δHx) := δHgHx. To see
that this bijection respects multiplication, let g, x ∈ G arbitrary and consider the
endomorphisms Φg,Φx ∈ End(C[H\G]) such that Φg(δH) = δHgH =

∑
δHgi and

Φx(δH) =
∑
δHxj , where the sums are over the cosets Hgi ⊂ HgH and the cosets

Hxj ⊂ HxH respectively. Composing the endomorphisms,

Φx(Φg(δH)) = Φx(
∑
i

δHgi) =
∑
i

g−1
i · Φx(δH) =

∑
i

g−1
i

∑
j

δHxj

=
∑
i,j

δHxjgi =
∑

y∈H\G/H

dyδHyH

where dy = #{(i, j) : Hxjgi = Hy}. This is the same coefficient as cγ in the
definition of the multiplication of the Hecke algebra (see (99)). This shows that
H(H,G) ' End(C[H\G]), as desired.

For part b), we need several basic facts from the representation theory of finite
groups. Recall that representations of finite groups over a field of characteristic 0
are completely reducible. That is, given a representation (V, σ) of G we can write
V ' ⊕W di

i where (Wi, τi) is irreducible and the decomposition is unique. Recall
also Schur’s lemma, which says that, for two irreducible G-representations W1 and
W2, we have

HomG(W1,W2) '

{
C, if W1 ' W2;

0, otherwise.

From Schur’s lemma, we see that

V =
⊕

W di
i −→ EndG(V ) 'Mdi×di(C).

In particular, the Hecke algebra HC(H,G) ' EndG(C[H\G]) is commutative if
and only if each G-irreducible representation appears with multiplicity at most 1
in EndG(C[H\G]). By Frobenius reciprocity,

HomG(W,C[H\G]) ' HomH(WH , 1) (102)

for any G representation W . If C[H\G] = W d
⊕(
⊕W di

i

)
where W 6' Wi, it

follows from Schur’s lemma that

dimC HomG(W,C[H\G]) = d (103)

By the previous reasoning, HC(H,G) is commutative if and only if for any ir-
reducible W the vector space on the left (102) has dimension at most 1. For
any G-representation on a finite dimensional vector space V , we can define the
contragredient representation on the dual V ∗ as

(g · λ)(w) := λ(g−1w), for λ ∈ V ∗, w ∈ V, g ∈ G.
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One checks immediately that the natural isomorphism V ' V ∗∗ respects the G
action defined on this way. Therefore, associating to a finite dimensional G-
representation its contragredient gives a permutation of finite dimensional G-
representations. Also, it can be checked that V is irreducible if and only if V ∗

is irreducible.

For the punchline, observe that an element λ ∈ HomH(WH , 1) is a functional
such that λ(hw) = λ(w) for every h ∈ H. Therefore, HomH(WH , 1) is the space
of fixed H-fixed vectors of the contragredient representation W ∗. Since mapping
a representation to its contragredient is a permutation of the finite dimensional
representations of G that preserves irreducible ones, we deduce that H(H,G) is
commutative if and only if dimC V

H ≤ 1 for every irreducible G-representation V ,
as desired. �

5.2. Hecke operators for integral weight. We now restrict to the special sit-
uation where G = GL+

2 (Q) and Γ = Γ0(N) ⊆ SL2(Z) is a Hecke congruence
subgroup.

Let k ∈ N be even and let χ be a Dirichlet character modulo N . Recall that we
can lift χ to a multiplier system on Γ0(N) via

χ(γ) = χ(d) for γ =

(
a b
c d

)
∈ Γ0(N).

Note that we can assume χ(−1) = (−1)k, so that the so obtained multiplier system
is consistent.

We define

∆N =

{
α =

(
a b
c d

)
∈ Mat2×2(Z) : N | c, (a,N) = 1 and det(α) > 0

}
.

Note that we have Γ0(N) ⊆ ∆N ⊆ G. Furthermore, for α =

(
a b
c d

)
∈ ∆N we

define
χ∗(α) = χ(a)−1.

Note that χ∗|Γ0(N) = χ, thus we have extended our multiplier system to ∆N .
If M is the module of holomorphic functions f : H → C of polynomial growth

(in the sense of Lemma 2.3.2), then we can let ∆N act on M by41

[f · α](z) = χ∗(α)−1 det(α)
k
2

(cz + d)k
f

(
az + b

cz + d

)
= χ∗(α)−1 det(α)

k
2 [f |kα](z).

In particular we observe that

MΓ0(N) = Mk(Γ0(N), χ).

41Note that we slightly diverge from standard notation and use [f |kα](z) = jα(z)−kf(αz) also

for α ∈ GL+
2 (R). Sometimes the slash operator is defined by including the factor det(α)

k
2 .
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Thus the abstract theory from the previous section allows us to define an action
of the Hecke algebra H(Γ0(N),∆M) on Mk(Γ0(N), χ). The action is given by

[f |Γ0(N)αΓ0(N)](z) =
∑
i

[f · αi](z) = det(α)
k
2

∑
i

χ∗(α)−1[f |kαi](z),

where Γ0(N)αΓ0(N) =
⊔
i Γ0(N)αi.

Remark 5.2.1. If we define the submodule

M0 = {f ∈M : Im(z)
k
2 f(z) is bounded},

then M
Γ0(N)
0 = Sk(Γ0(N), χ). Since the action of ∆N preserves M0 we see that the

action of the Hecke algebra H(Γ0(N),∆N) preserves the subspace of cusp forms.

Remark 5.2.2. Let dN = diag(N, 1), then

αι = d−1
N αtdN

defines an involution on ∆N and we have Γ0(N)ι = Γ0(N). One further checks
that also

Γ0(N)αιΓ0(N) = Γ0(N)αΓ0(N)

for all α ∈ ∆N . Thus H(Γ0(N),∆N) is commutative.

While each double co-set Γ0(N)αΓ0(N) gives rise to a Hecke operator we are
interested in special combinations of them. We define

∆N(n) = {α ∈ ∆N : det(α) = n}.

Lemma 5.2.3. We have

∆N(n) =
⊔
ad=n,
a|d,

(a,N)=1

Γ0(N)

(
a 0
0 d

)
Γ0(N) =

⊔
ad=n,

(a,N)=1,
b mod d

Γ0(N)

(
a b
0 d

)
.

Proof. The first identity follows (essentially) from the smith normal form. To see

the second we consider the right co-sets Γ0(N)

(
a b
0 d

)
for ad = n, (a,N) = 1

and b mod d. It is easy to see that they are contained in ∆N(n) and that they

are disjoint. Now pick

(
a b
c d

)
∈ ∆N(n). We chose co-prime integers g, h so that

ga + hc = 0. Note that necessarily N | g. Thus there is a matrix γ =

(
∗ ∗
g h

)
∈

Γ0(N). And we have

γ ·
(
a b
c d

)
=

(
a′ ∗
0 d′

)
.

It is clear that a′d′ = n must hold. Note that (a,N) = (a′, N) = 1. Finally we
can further multiply by ±T j to make the diagonal positive and to force the upper
right entry to lie between 0 and d− 1. �
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Thus we define the element

ηn =
∑
ad=n,
a|d,

(a,N)=1

Γ0(N)

(
a 0
0 d

)
Γ0(N) ∈ H(Γ0(N),∆N).

This element is used to define the operator Tn : Mk(Γ0(N), χ) → Mk(Γ0(N), χ)
given by

Tnf = n
k
2
−1 · [f |ηn].

Note that we have included a normalizing factor, which will turn out to be con-
venient.42 The operator Tn is what is usually refereed to as nth Hecke Operator.
Unravelling the definition gives

Tnf(z) =
1

n

∑
ad=n,

(a,N)=1

χ(a)ak
∑

b mod d

f

(
az + b

d

)
.

Note that for p = n with (p,N) = 1 this reduces to (98). Note that T1 is the
identity operator.

Remark 5.2.4. Recall the classical Eisenstein Series Ek(z) = 1
2ζ(k)

ek(1, z). We can

write the action of Tp (for all p) on Ek(z) as follows:

TpEk(z) =
1

2ζ(k)

1

p

(
e(

1

p
, z) +

p−1∑
b=0

e

(
1,
z + b

p

))
. (104)

Now we write Lz = Z + Zz ⊆ C for the lattice in C generated by 1 and z. Since
(at least for k ≥ 4) the function ek(1, z) depends only on the lattice and not on
our choice of basis we can write ek(Lz) = ek(1, z). Staring at (104) long enough
makes us realize that the lattices

Z · 1

p
+ Z · z, Z + Z · z

p
, . . . , Z + Z · z + (p− 1)

p

are precisely those lattices L ⊇ Lz with [L : Lz] = p. Therefore, we can rewrite

TpEk(z) =
1

2ζ(k)

1

p

∑
L⊇Lz ,

[L : Lz ]=p

ek(L).

This is a general phenomena. Indeed, when viewing elements of Mk(SL2(Z), ϑtr)
as functions on lattices we can interpret all the Hecke Operators Tn as averages
over neighbouring lattices.

We will study finer properties of these operators. First we compute how they
act on the Fourier expansion of a form:

42Attention: Normalizations of Hecke-Operators differ in the literature!
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Lemma 5.2.5. Suppose f ∈Mk(Γ0(N), χ) is given by f(z) =
∑∞

m=0 af (m;∞)e(mz).
Then we have

[Tnf ](z) =
∞∑
m=0

∑
a|(n,m),
(a,N)=1

χ(a)ak−1af (
mn

a2
;∞)e(mz).

Proof. Inserting the Fourier expansion of f into the definition of the nth Hecke
operator yields

[Tnf ](z) =
1

n

∞∑
m=0

af (m;∞)
∑
ad=n,

(a,N)=1

χ(a)ak
∑

b mod d

e(m · az + b

d
)

=
∞∑
m=0

af (m;∞)
∑
ad=n,

(a,N)=1

χ(a)ak−1e(
nm

d2
z)

1

d

∑
b mod d

e(m · b
d

).

The b-sum vanishes unless m ≡ 0 mod d. Thus we get

[Tnf ](z) =
∞∑

m′=0

∑
ad=n,

(a,N)=1

af (m
′d;∞)χ(a)ak−1e(

nm′

d
z)

=
∞∑

m′=0

∑
a|n,

(a,N)=1

af (m
′n/a;∞)χ(a)ak−1e(am′z) (105)

The result follows by simply rewriting the summation accordingly. �

Remark 5.2.6. Recall that the Eisenstein Series Ek(z) ∈ Mk(SL2(Z), ϑtr) is given
by

Ek(z) = 1 +
ik2k

Bk

∞∑
m=1

σk−1(m)e(mz).

Thus applying the nth Hecke Operator Tn yields

[TnEk](z) = σk−1(n) +
ik2k

Bk

∞∑
m=1

∑
a|(n,m)

ak−1σk−1(mn/a2)e(mz).

We compute∑
a|(n,m)

ak−1σk−1(mn/a2) =
∑

a|(n,m)

∑
d|mn
a2

(ad)k−1 = σk−1(n)σk−1(m).

Thus we see that
[TnEk](z) = σk−1(n)Ek(z).

We have found that the Eisenstein series Ek is an eigenfunction of all Hecke oper-
ators with multiplicative eigenvalues given by divisor functions.
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Exercise 3, Sheet 11: Let f : H→ C be holomorphic and suppose that f |kγ =
f for all γ ∈ SL2(Z) and a fixed even integer k ≥ 2. Show that, if f is an
eigenfunction of all Hecke operators Tn with n ∈ N, then f ∈ Mk(SL2(Z), ϑtr).
(Even though we have not assumed that f is holomorphic at infinity, the Hecke
operators act on it in the usual way.)

Solution. Denote the annulus of radii r0 and R0 by

A(r0, R0) := {z ∈ C : r0 < |z| < R0},

where we allow r0 = 0 or R0 = ∞. Recall that if h is an holomorphic function
defined on A(r0, R0), then it admits an expansion

h(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnz
−n

where the first series converges absolutely for |z| < R0 and the second converges
absolutely for |z| > r0. We will briefly explain why. Denote by Cr the circumfer-
ence of radius r traversed once counter clockwise. Define

Ir(h)(z) :=
1

2πi

∫
Cr

h(w)

w − z
dw (|z| 6= r),

for some r0 < r < R0. Then, for |z| < r we can expand (1− z/w)−1 as a geometric
series and obtain

Ir(h)(z) =
1

2πi

∫
Cr

1

w

h(w)

1− z
w

dw =
∞∑
n=0

(
1

2πi

∫
Cr

h(w)

wn+1
dw

)
zn

where the power series expansion is valid for |z| < r since the coefficients are
bounded by ∣∣∣∣ 1

2πi

∫
Cr

h(w)

wn+1
dw

∣∣∣∣ ≤ (sup
z∈Cr
|h(z)|

)
r−n

Similarly, for |z| > r we can expand (1− w/z)−1 as a geometric series and obtain

Ir(h)(z) = − 1

2πi

∫
Cr

1

z

h(w)

1− w
z

dw = −
∞∑
n=1

(
1

2πi

∫
Cr

h(w)wn−1 dw

)
z−n

where the power series is absolutely convergent for |z| > r since the coefficients
are bounded by ∣∣∣∣ 1

2πi

∫
Cr

h(w)wn−1 dw

∣∣∣∣ ≤ (sup
z∈Cr
|h(z)|

)
rn (106)

Now, for r0 < r < R < R0 we have

h(z) = IR(h)(z)− Ir(h)(z) on r < |z| < R
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by Cauchy’s theorem, since for every point outside A(r0, R0) the winding number
with respect to the cycle CR − Cr is 0, while the winding number of every point
r < |z| < R is one. Therefore, we get the expansion into power series

h(z) =
∞∑
n=0

anz
n +

∞∑
n=1

bnz
−n

where

an =
1

2πi

∫
Cr

h(w)

wn+1
dw and bn =

1

2πi

∫
Cr

h(w)wn−1 dw

for arbitrary r0 < r < R0.

Coming back to our exercise, note that since f : H → C is holomorphic and
1-periodic, it induces a well-defined holomorphic map on A(0, 1) = {q ∈ C : 0 <
|q| < 1} by h(q) = f(z), where q = e(z). Expanding h into its power series we get

f(z) =
∞∑
n=0

anq
n +

∑
n=1

bnq
−n

where for any 0 < r < 1 there exists Ar := sup|q|=r |h(q)| < ∞ such that |an| ≤
Arr

−n for all n ≥ 0, and |bn| ≤ Arr
n for all n ≥ 1. In particular, both series

converge absolutely for z ∈ H. Recall that the Hecke operators for N = 1 and
trivial multiplier act as

[Tnf ](z) =
1

n

∑
ad=n

ak
∑

b mod d

f

(
az + b

d

)
from which it follows that if f(z) =

∑
m∈Z cme(mz), with an absolutely convergent

series for z ∈ H, then (we reprove Lemma 5.2.5 with a general Laurent series
expansion)

[Tnf ](z) =
1

n

∑
m∈Z

cm
∑
ad=n

ak
∑

b mod d

e

(
m
az + b

d

)
=
∑
m∈Z

cm
∑
ad=n

ak−1e
(mn
d2
z
) 1

d

∑
b mod d

e

(
m
b

d

)
=
∑
m∈Z

cm
∑
ad=n
d|m

ak−1e
(mn
d2
z
)

=
∑
r∈Z

∑
m∈Z, ad=n
d|m,mn=d2r

cma
k−1e(rz) =

∑
r∈Z

∑
a|(n,r)

c rn
a2
ak−1e(rz).

To justify the last step, note that ad = n implies that mn = d2r is equivalent to
m
d
a = r, so necessarily a | (n, r), and for any such a we solve m = rd

a
= rn

a2 . In
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particular we observe that writing [Tnf ](z) =
∑

r∈Z dre(rz) then

d0 = σk−1(n)c0, d1 = cn, and d−1 = c−n.

Now suppose that f is an eigenfunction of all the Hecke operators Tn, with eigen-
value λn. Then it follows that

λnc0 = σk−1(n)c0, λnc1 = cn, and λnc−1 = c−n. (107)

If c0 6= 0, we deduce that λn = σk−1(n). If in addition c−1 6= 0, then c−n =
σk−1(n)c−1. Since k ≥ 2, letting n→∞ we obtain a contradiction to the bound

|c−n| = |bn| ≤ Arr
n

for any 0 < r < 1 and Ar depending on r. Therefore, if c0 6= 0 we have seen that
f is holomorphic at infinity, therefore f ∈Mk(SL2(Z), ϑtr). In fact, we deduce the
stronger statement that cn = σk−1(n)c1, so that f is of the form f = c+ dEk, and
since k ≥ 2 it must be c = 0 and k ≥ 4 (since M2(SL2(Z), ϑtr) = 0).

On the other hand, if c0 = 0 we have two cases. If c−1 = 0 then we are finished,
since using (107) we deduce that c−n = 0 for all n ≥ 1, arriving at the conclusion
that f ∈ Sk(SL2(Z), ϑtr). If c−1 6= 0, then from (107) we see that

cn =
c1

c−1

c−n for all n ≥ 1 implying that |cn| ≤ Brr
|n| for all n ∈ Z

where 0 < r < 1 is arbitrary and the constant Br depends on f and r. From this
bound, the function

f(z) =
∑
n∈Z

cne(nz) (108)

initially defined only for z ∈ H, admits an holomorphic extension to the entire
complex plane C (since the power series on the right hand side converges abso-
lutely for any z ∈ C).

To get a contradiction, we recall Lemma 2.3.2, which asserted that if f is holo-
morphic in H and satisfies f |kα = f for all α ∈ SL2(Z), then f ∈ Sk(SL2(Z), ϑtr)
if and only if the function g(z) := |Im(z)k/2f(z)| is bounded on H. Observing that
g(αz) = g(z) for any α ∈ SL2(Z), we deduce that g is bounded on H if and only
if it is bounded on a fundamental domain D. We can choose D to have the cusp
at a point of R (not at infinity),43 and then D is a bounded subset with compact
closure in C. Since f extends continuously to C, we see that g is bounded on D
and we conclude that f ∈ Sk(SL2(Z), ϑtr). Since we assumed that c−1 6= 0, we
have found the contradiction we were looking for. �

43For example, let S ∈ SL2(Z) be such that S(z) = −1/z and consider D := S(F), where F is
the usual fundamental domain for SL2(Z) with the cusp at∞. Then D is a fundamental domain
for SL2(Z) with the cusp at 0.



ADVANCED ALGEBRA 1: MODULAR FORMS 155

The next result gives us valuable relations between the different Hecke Opera-
tors:44

Proposition 5.2.7. Let n,m ∈ N. Then

TnTm =
∑

d|(m,n),
(d,N)=1

χ(d)dk−1Tmn
d2
.

Proof. We directly compute

mn · [TnTmf ](z) =
∑

a1d1=m,
a2d2=n,

(a1a2,N)=1

χ(a1a2)(a1a2)k
∑

b1 mod d1,
b2 mod d2

f

(
a1a2z + a1b2 + b1d2

d1d2

)
.

We write δ = (a1, d2) and note that necessarily δ | (n,m). Put a′1 = a1/δ and
d′2 = d2/δ. Then we get

mn · [TnTmf ](z) =
∑

δ|(n,m),
(δ,N)=1

χ(δ)δk
∑

a′1d1=m/δ,
a2d′2=n/δ,

(a′1a2,N)=1,
(a′1,d

′
2)=1

χ(a′1a2)(a′1a2)k

·
∑

b1 mod d1,
b2 mod d′2δ

f

(
a′1a2z + a′1b2 + b1d

′
2

d1d′2

)
.

Note that since f is one periodic we find∑
b1 mod d1,
b2 mod d′2δ

f

(
a′1a2z + a′1b2 + b1d

′
2

d1d′2

)
= δ

∑
b mod d1d′2

f

(
a′1a2z + b

d1d′2

)
.

Finally we can write a = a′1a2 and d = d1d
′
2. Then ad = nm/δ2 and (a,N) = 1.

Note that we have a bijection

{(a′1, a2, d1, d
′
2) : a′1d1 = m/δ, a2d

′
2 = n/δ, (a′1a2, N) = 1 and (a′1, d

′
2) = 1}

1:1↔ {(a, d) : ad = nm/δ2 and (a,N) = 1}.

Indeed the inverse assignment is given by

a′1 =
m/δ

(m/δ, d)
, d1 = (m/δ, d), d′2 =

d

(m/δ, d)
and a2 =

a

a′1
=
n/δ

d′2
.

44In particular we obtain a direct proof that the Hecke operators are commutative.
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Thus we see that

mn · [TnTmf ](z) =
∑

δ|(n,m),
(δ,N)=1

χ(δ)δk+1
∑

ad=nm/δ2,
(a,N)=1

χ(a)ak ·
∑

b mod d

f

(
az + b

d

)

=
∑

δ|(n,m),
(δ,N)=1

χ(δ)δk+1 · mn
δ2
Tmn/δ2 .

This completes the proof. �

This has two direct implications, which we will frequently use in what follows:

• The Hecke operators are multiplicative: TmTn = Tmn if (m,n) = 1;
• For a prime p and l ∈ N we have

Tpl+1 = TpTpl − χ(p)pk−1Tpl−1 . (109)

Theorem 5.2.8. Let (n,N) = 1. The operator Tn acting on Sk(Γ0(N), χ) is
normal and satisfies

〈Tnf, g〉 = χ(n)〈f, Tng〉 for f, g ∈ Sk(Γ0(N), χ).

Proof. By using (109) (inductively) and the multiplicative nature of the Hecke
operators we observe that it is sufficient to check the desired property for Tp with
p prime.

By definition we have

〈Tpf, g〉 = pk−1
∑

α∈Γ0(N)\∆N (p)

χ∗(α)−1〈f |kα, g〉.

As we have seen above we can take α =

(
a b
0 d

)
. Put

α′ = p · α−1.

We claim that

〈f |kα, g〉 = 〈f, g|kα′〉 (110)

From here we can finish the proof as follows. For γ1, γ2 ∈ Γ0(N) we compute

χ∗(α)−1〈f, g|k[α′]〉 = χ(p)〈f, χ∗(α′)−1g|kα′〉
= χ(p)〈f, χ∗(γ1α

′γ−1
2 )−1g|k[γ1α

′γ−1
2 ]〉.

We can now choose γ1 and γ2 such that γ1α
′γ−1

2 = α. (To guess the right matrices
is an exercise.) Inserting this above gives the desired result.

However, we still have to show (110). This is essentially a change of variables.
Let F be a fundamental domain for Γ(pN) ⊆ Γ0(N). Then, for α as above, f |kα
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is Γ(pN) invariant. Recall Im(αz) = det(α)
|jα(z)|2 Im(z). We compute

det(α)k · 〈f |kα, g|kα〉 =
1

[Γ(pN) : Γ0(N)]

∫
F
f(αz)g(αz) Im(αz)kdµ(z)

=
1

[Γ(pN) : Γ0(N)]

∫
αF
f(z)g(z) Im(z)kdµ(z)

= 〈f, g〉.

We are done since

g = g|k[α′ ·
1

p
α] = pk[g|kα′]|kα,

so that

〈f |kα, g〉 = pk〈f |kα, [g|α′]|kα〉 = 〈f, g|kα′〉.
�

We make two observations that follow directly:

• If (n,N) = 1 and Tnf = λf (n)f then λf (n) = χ(n)λf (n); and
• If f1 and f2 are two eigenfunctions of Tn (for (n,N) = 1) with different

eigenvalues then 〈f1, f2〉 = 0.

Corollary 5.2.9. The space Sk(Γ0(N), χ) has an orthogonal basis of simultaneous
eigenfunctions of all Hecke operators Tn with (n,N) = 1.

Lemma 5.2.10. Assume that f(z) =
∑∞

m=1 af (m;∞)e(mz) ∈ Sk(Γ0(N), χ) is an
eigenfunction of Tn with eigenvalue λf (n). Then

λf (n)af (1;∞) = af (n;∞).

Proof. Write Tnf = λf (n)f and compare Fourier coefficients using Lemma 5.2.5.
�

So far we have seen that the theory of the Hecke operators Tn is very nice as
soon as (n,N) = 1. Our next goal is to study the remaining operators.

Exercise 1, Sheet 11: Let ∆ ∈ S12(SL2(Z), ϑtr) be the Ramanujan function.
Show that ∆(z) + ∆(6z) ∈ S12(Γ0(6), ϑtr) is not an eigenfunction of all Hecke
operators.

Solution. Recall the definition of the Hecke operator Tn for Γ0(N), weight k and
multiplier χ. In our particular case N = 6, k = 12 and χ = ϑtr we have

Tnf(z) =
1

n

∑
ad=n,

(a,6)=1

a12
∑

b mod d

f

(
az + b

d

)
.
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In particular, when n = 6 the only option for a is a = 1, and this gives

T6f(z) =
1

6

∑
b mod 6

f

(
z + b

6

)
.

The result is that, if f has an expansion at infinity f(z) =
∑∞

n=0 ane(nz) then

T6f(z) =
1

6

∞∑
n=0

ane
(nz

6

) ∑
b mod 6

e

(
nb

6

)
=

∞∑
n≡0 mod 6

ane
(nz

6

)
=
∞∑
n=0

a6ne(nz)

(which is the formula of Lemma 5.2.5, since there we can only take a = 1). Writing
∆(z) =

∑∞
n=1 τ(n)e(nz) we obtain T6∆(z) =

∑
n=1 τ(6n)e(nz). On the other hand

∆(6z) =
∞∑
k=1

τ(k)e(6kz) =
∞∑
n=1

δ6|nτ(n/6)e(nz)

and therefore,

(T6∆(6·))(z) =
∞∑
n=1

τ(n)e(nz) = ∆(z).

If ∆(·) + ∆(6·) was an eigenfunction for T6, then for some λ ∈ C it would hold
that

λ

(
∞∑
n=1

τ(n)e(nz) +
∞∑
n=1

τ(n)e(6nz)

)
= T6(∆(·)+∆(6·))(z) =

∞∑
n=1

τ(6n)e(nz)+
∞∑
n=1

τ(n)e(nz).

After equating coefficients, this is equivalent to

τ(n) + τ(6n) = λτ(n) + λδ6|nτ
(n

6

)
for n ∈ Z≥1.

Putting n = 1, using τ(1) = 1 we get τ(6) = λ − 1, and putting n = 2 we get
τ(12) = (λ − 1)τ(2) = τ(6)τ(2). By looking at a table of values we can see that
this identity does not hold (τ(2) = −24, τ(6) = −6048 and τ(12) = −370944). �

Definition 5.2.1. We define the conductor of a Dirichlet character χ modulo N
to be the smallest (positive integer) q = cond(χ) such that χ(n + qm) = χ(n) for
all n,m ∈ Z with (n,N) = (n+ qm,N) = 1. Of course this implies q | N . We call
the character χ0(n) = δ(n,N)=1 the principal character modulo N . Further we call
χ a primitive character modulo N if cond(χ) = N . (Note that for us the principle
character χ0 counts as a primitive character modulo 1. This is not standard!)

The idea behind this definition is the following. If M | N , then we have the
canonical (surjective) map

pN→M : (Z/NZ)× → (Z/MZ)×

This can be used to lift a character χ of (Z/MZ)× to a character χ′ on (Z/NZ)×

by setting
χ′(n) = χ(pN→M(n)).
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Recall that Dirichlet characters modulo N are nothing but characters of (Z/NZ)×

that are extended to Z in the obvious way. One finds that χ is primitive if and
only if χ is not obtained from a character of (Z/MZ)× when M is a proper divisor
of N .

A similar (but slightly more complicated) phenomenon occurs for modular forms.
A taste of what follows can be explicitly observed when taking a closer look at the
Eisenstein space:

Remark 5.2.11. Recall that Mk(Γ0(N), χ) = Ek(Γ0(N), χ) ⊕ Sk(Γ0(N), χ). It is
desirable to also find a convenient basis for the (non cuspidal) part of the space
that is spanned by Eisenstein series. For N = 1 this is no problem, since we have
seen by Remark 5.2.6 that Ek is an eigenfunction of all Hecke operators. In general
one has to work a little harder.

Let us assume k ≥ 3 to avoid convergence problems. Then a basis ofEk(Γ0(N), χ)
is given by the Eisenstein series Ea associated to singular cusps a. This basis usu-
ally does not diagonalize the Hecke operators.

Instead we will consider the following Eisenstein series:

Eχ1,χ2(z) =
1

2

∑
(c,d)=1,

(c,N1)=(d,N2)=1

χ1(c)χ2(d)

(cN2z + d)k
,

attached to two primitive Dirichlet characters χi modulo Ni (with i = 1, 2). One
checks that Eχ1,χ2(z) ∈Mk(Γ0(N1N2), χ1χ

−1
2 ). The Fourier expansion reads

Eχ1,χ2(z) = δN1=1 + Ck(χ1, χ2) ·
∞∑
m=1

σχ1,χ2,k−1(m)e(mz),

where

Ck(χ1, χ2) =
(−i2π)kτ(χ2)

Nk
2 Γ(k)L(k, χ1χ2)

and

σχ1,χ2,k−1(m) =
∑
ab=m,

(a,N1)=(b,N2)=1

χ1(a)χ2(b)−1bk−1.

Note that the Fourier coefficient σχ1,χ2,k−1(m) is a generalized divisor sum. Fur-
thermore

τ(χ2) =
1√
N2

∑
x mod N2,
(x,N2)=1

χ2(x)e

(
x

N2

)

is a (generalized) Gauß sum and

L(s, χ1χ2) =
∞∑
n=1,

(n,N2)=1

[χ1χ2](n)n−s
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is a Dirichlet L-function. We have omitted the proofs for the properties summa-
rized above, since they are routine modification of the arguments in Section 2.5.

Repeating the computation from Remark 5.2.6 shows that

TnEχ1,χ2(z) = σχ1,χ2,k−1(n) · Eχ1,χ2(z)

for all n. We call Eχ1,χ2(z) ∈Mk(Γ0(N1N2), χ1χ
−1
2 ) (holomorphic) newform Eisen-

stein series (of weight k). Keep in mind that we have only considered primitive
characters χ1 and χ2 so far.

To generate the space Ek(Γ0(N), χ) we first recall that a full set of non-equivalent
cusps for Γ0(N) is given by u

v
with v | N , (u, v) = 1 and u mod (v,N/v). One can

explicitly compute a scaling matrix and observe that u
v

is singular with respect to

χ if and only if χ is N
(v,N/v)

-periodic. In particular, if χ has conductor q, then there
are

]{singular cusps} =
∑
v|N,

(v,N/v)|N
q

ϕ((v,N/v)).

For k ≥ 3 this is precisely the dimension of Ek(Γ0(N), χ) because

Ek(Γ0(N), χ) = 〈Ea(z) : a singular cusp〉.
We claim that one also has

Ek(Γ0(N), χ) = 〈Eχ1,χ2(Mz) : χi primitive character modulo Ni

and MN1N2 | N and χ = χ1χ
−1
2 〉.

To prove this one could proceed as follows. First, it is easy to see that the Eisen-
stein series Eχ1,χ2(Mz) appearing on the right hand side are linearly independent.
Second, one checks that they are orthogonal to cusp-forms. Finally one can match
up the dimension. Let us remark that one can actually compute an explicit change
of basis between the two sets of Eisenstein series considered above.

Motivated by these observations we make the following definition. Let χ be a
Dirichlet character modulo N with conductor q. For q | N ′ | N and M | N

N ′
we

define
ιN ′,M : Sk(Γ0(N ′), χ)→ Sk(Γ0(N), χ), f 7→ f |kaM ,

where ad = diag(M, 1). The images of these maps (with N ′ 6= N) make up the
those modular forms (of level N , weight k and nebentypus χ) that come from
smaller levels. These play the same role as non-primitive Dirichlet characters. We
define

S[k(Γ0(N), χ) = 〈ιN ′,Mf : q | N ′ | N, N ′ 6= N, M | N
N ′

and f ∈ Sk(Γ0(N ′), χ)〉.

Elements of this space are called oldforms. We denote the orthogonal complement
by

S]k(Γ0(N), χ) = [S[k(Γ0(N), χ)]⊥.
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Lemma 5.2.12. The spaces S]k(Γ0(N), χ) and S[k(Γ0(N), χ) are stable under the
Hecke Operators Tn with (n,N) = 1.

Proof. This follows from the diagram

Sk(Γ0(N ′), χ)) Sk(Γ0(N ′), χ))

Sk(Γ0(N), χ)) Sk(Γ0(N), χ))

ιN′,M

Tn

ιN′,M

Tn

which is easily seen to be commutative. �

Exercise 2, Sheet 11: Let N > 1 be an integer and let M | N be a divisor of
N . Let f ∈ Sk(Γ0(N), θtr). Show that the following two properties are equivalent:

i) f is orthogonal to 〈iN/M,1(g) : g ∈ Sk(Γ0(N/M), ϑtr)〉;
ii) f satisfies

1

[Γ0(N/M) : Γ0(N)]

∑
α∈Γ0(N)\Γ0(N/M)

f |kα ≡ 0.

Solution. Recall the following fact from functional analysis.

Proposition 5.2.13. Let H1, H2 be Hilbert spaces, T : H1 → H2 a continuous
linear map and let T ∗ : H2 → H1 be its adjoint, which is automatically continuous,
and is defined as the unique linear map that satisfies

〈Tv, w〉H2 = 〈v, T ∗w〉H1 for all v ∈ H1, w ∈ H2

Then the kernel of T ∗ is equal to the orthogonal complement of the image of T . In
symbols, we have T (H1)⊥ = ker(T ∗).

Proof. Let w ∈ H2. Then

w ∈ ker(T ∗) iff 〈v, T ∗w〉H1 = 0 for all v ∈ H1 iff 〈Tv, w〉H2 = 0 for all v ∈ H1 iff w ∈ T (H1)⊥.

�

We now show that the maps iN/M,1 : Sk(Γ0(N/M), ϑtr) → Sk(Γ0(N), ϑtr) and
pN,N/M : Sk(Γ0(N), ϑtr)→ Sk(Γ0(N/M), ϑtr) given by

pN,N/M(f) =
1

[Γ0(N/M) : Γ0(N)]

∑
α∈Γ0(N)\Γ0(N/M)

f |kα

are adjoint with respect to the following normalization of the Petersson inner
product. For a congruence subgroup Γ ⊂ SL2(Z), define the inner product on the
space Sk(Γ, ϑ) by

〈f, g〉Γ :=
1

[SL2(Z) : Γ]

∫
FΓ

f(z)g(z)yk
dx dy

y2
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where FΓ is a fundamental domain for Γ. In our case, let FN/M be a fundamental
domain for Γ0(N/M) and note that a fundamental domain for FN is given by

FN =
⊔

α∈Γ0(N)\Γ0(N/M)

αFN/M

Then

〈iN/M,1(g), f〉Γ0(N) =
1

[SL2(Z) : Γ0(N)]

∫
FN

g(z)f(z)yk
dx dy

y2

=
1

[SL2(Z) : Γ0(N)]

∑
α∈Γ0(N)\Γ0(N/M)

∫
αFN/M

g(z)f(z)yk
dx dy

y2

=
1

[SL2(Z) : Γ0(N)]

∑
α∈Γ0(N)\Γ0(N/M)

∫
FN/M

[g|kα](z)[f |kα](z)yk
dx dy

y2

=
1

[SL2(Z) : Γ0(N/M)]

1

[Γ0(N/M) : Γ0(N)]

∑
α∈Γ0(N)\Γ0(N/M)

∫
FN/M

g(z)[f |kα](z)yk
dx dy

y2

=
1

[SL2(Z) : Γ0(N/M)]

∫
FN/M

g(z) pN,N/M(f)(z)yk
dx dy

y2
= 〈g, pN,N/M(f)〉Γ0(N/M).

Therefore, iN/M,1 and pN,N/M are adjoint and the exercise follows by the proposition
above. �

Example 5.2.14. It turns out that S]12(Γ0(2), ϑtr) = {0}. In particular, we find
that

S12(Γ0(2), ϑtr) = 〈ι1,1(∆), ι1,2(∆)〉.
Note that these are eigenfunctions of all Hecke operators Tn with 2 - n. Let us
compute the action of

T2f(z) =
1

2

[
f
(z

2

)
+ f

(
z + 1

2

)]
on these functions. It is easy to see that T2ι1,2(∆) = ι1,1(∆). To compute its action
on ι1,1(∆) we recall the Fourier expansions

ι1,1(∆)(z) = 1 · e(z)− 24 · e(2z) + 252 · e(3z)− 1472 · e(4z) + . . . and

ι1,2(∆)(z) = 0 · e(z) + 1 · e(2z) + 0 · e(3z)− 24 · e(4z) + . . . .

We compute

T2ι1,1(∆)(z) =
1

2
[∆(

z

2
) + ∆(

z + 1

2
)] =

∞∑
m=0

τ(2n)e(mz)

= −24e(z)− 1472e(2z)− 6048e(3z) + 84480 · e(4z) + . . . .

By comparing (the first two) Fourier coefficients we find that

T2ι1,1(∆)(z) = −24ι1,1(∆)(z)− 2048 · ι1,2(∆)(z).
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In summary, the action of T2 on S12(Γ0(2), ϑtr) (with respect to the basis {ι1,1(∆), ι1,2(∆)}
is given by the matrix (

−24 1
−2048 0

)
.

This turns out to be diagonalizable (over C).

Our hope is that the space S]k(Γ0(N), χ) has a convenient basis. Furthermore,

it is reasonable to expect that the spaces S]k(Γ0(N ′), χ) can be used to study
S[k(Γ0(N), χ). The following theorem is the technical key input.

Theorem 5.2.15 (Atkin-Lehner 1970). Let f(z) =
∑∞

m=1 af (m;∞)e(mz) ∈ Sk(Γ0(N), χ)
such that af (m;∞) = 0 whenever (m,N) = 1, then f ∈ S[k(Γ0(N), χ).

Proof. Long and technical, but essentially elementary. We sketch the steps, but
leave out several technical details.

Let p1, . . . , pr be the prime divisors of N . We say that f is of length s, if
af (m;∞) = 0 unless pi | m for some 1 ≤ i ≤ s. We will show the following
statement, which allows one to complete the argument via induction. Suppose
f ∈ Sk(Γ0(N), χ) is of length ≤ s, then there is h ∈ Sk(Γ0(N/ps), χ) such that
f − ιN/ps,psh is of length ≤ s− 1.

We define the two operators

Vpf(z) = f(pz) and Upf(z) =
∑

m≡0 mod p

af (m;∞)e(
m

p
z).

(Note that in some sense Vp = ιN,p.) We observe that

[VpUpf ](z) =
∑

m≡0 mod p

af (m;∞)e(mz).

In particular the condition that f is of length ≤ s can be written as

0 =
s∏
i=1

(id− VpUp)f.

We first look at the situation when χ is not defined modulo N/ps. Then we claim

that VpUpf = 0. Put f̃ = Upsf and observe that f̃ |kT = f̃ . In particular we see

that Vps f̃(z + 1
p
) = Vps f̃(z). We abuse notation and write Vps f̃(z + 1

p
) = Vps f̃ |kT

1
p

where T
1
p =

(
1 1/p
0 1

)
. On the other hand

BN =

(
1 1
N N + 1

)
∈ Γ0(N).
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Thus Vps f̃ |kBN = Vps f̃ since χ(BN) = 1. Set

AN(u, v) = T
u
pBN t

v
p =

(
1 + N

ps
u 1 + N

ps
u+ u+v+Nuv/ps

ps

N 1 + N
ps
v +N

)
,

so that
Vps f̃ = Vps f̃ |kAN(u, v) = χ(AN(u, v))Vpf̃ .

Note that here we select u, v ∈ Z with ps | (u + v + Nuv/ps). The point is that
one can play around with u and v to cook up a combination with χ(AN(u, v)) 6= 1,
which implies that f must vanish.45 In conclusion, if we suppose that χ is not
defined modulo N/ps we find that

0 =
s∏
i=1

(id− VpUp)f =
s−1∏
i=1

(id− VpUp)f.

We conclude that f is itself of length ≤ s− 1 and we are done.
The case when p2

s | N and χ is defined modulo N/ps can be treated as follows.
In this case we claim that

Upsf ∈ Sk(Γ0(N/ps), χ). (111)

With this at hand we can put h = Upsf and observe that VpsUpsf = ιN/psh. Thus
we have

0 =
s∏
i=1

(id− VpUp)f =
s−1∏
i=1

(id− VpUp)[f − ιN/ps,psh].

In particular we see that f − ιN/ps,psh has length ≤ s− 1 as desired. To see (111)
we (again) observe that

Upf(z) =
1

p

p−1∑
b=0

f

(
z + b

p

)
.

Now put f̃(z) = f(p−1
s z). It is easy to check that f̃ ∈ Sk(Γ0(N/ps, ps), χ) where

Γ0(N/ps, ps) =

{(
∗ b
∗ ∗

)
∈ Γ0(N/ps) : ps | b

}
.

Now Upf(z) = 1
p

∑p−1
b=0 [f̃ |kT b](z). But we can check that for ps | N/ps one has

Γ0(N/ps) =

p−1⊔
b=0

Γ0(N/ps, ps)T
b.

Thus the claim is now obvious since we average over a system of representatives
for Γ0(N/ps, ps)\Γ0(N/ps).

45Finding these combinations of u and v is not to hard and we leave it as an exercise to do
so. This crucially uses that χ is not defined modulo N/ps.
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Finally we suppose that ps | N , p2
s - N and χ is defined modulo N/ps. Without

loss of generality we can assume that all primes p1, . . . , ps have these properties.
(Otherwise we simply re-order them and apply one of the earlier cases.) We set

f (i+1) =
i∏

j=1

(id− VpjUpj)f and gi = Upif
(i).

Note that f =
∑s

i=1 Vpigpi . One can check that

Vpigi ∈ Sk(Γ0(Np1 · · · pi)) ⊆ Sk(Γ0(N2/ps), χ) for i < s.

In particular,

Vpsgs = f −
s−1∑
i=1

Vpigi ∈ Sk(Γ0(N2/ps), χ).

This suffices to conclude that gs ∈ Sk(Γ0(N2/p2
s), χ). As before we write

[Upsf ](z) =
1

ps

ps−1∑
b=0

[f̃ |kT b](z) with f̃(z) = f(z/ps).

Recall that f̃(z) ∈ Sk(Γ0(N/ps, ps), χ). Since by assumption ps - N/ps we now
have

Γ0(N/ps) = Γ0(N/ps, ps)

(
psx 1
N2

p2
s
y 1

)
︸ ︷︷ ︸
=Q∈SL2(Z)

t
ps−1⊔
b=0

Γ0(N/ps, ps)T
b,

for suitable x, y ∈ Z. We can thus write

[Upsf ](z) =
1

ps

∑
α∈Γ0(N/ps,ps)\Γ0(N/ps)

[f̃ |kα](z)︸ ︷︷ ︸
=h(z)∈Sk(Γ0(N/ps),χ)

− 1

ps
[f̃ |kQ](z)︸ ︷︷ ︸

=:[Wpsf ](z)

.

Since gs ∈ Sk(Γ0(N2/p2
s), χ) and Q ∈ Γ0(N2/p2

s) we have

WpVpgs =
1

ps
gs|kQ =

1

ps
gs.

We now compute

h = Upsf +Wpsf =
s∑
i=1

[UpsVpigi +WpsVpigi]

= (1 +
1

p
)gs +

s−1∑
i=1

[VpiUpsgi +WpsVpigi].
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Finally this allows us to write

f−(1−1

p
)−1Vpsh = f−Vpgs−(1− 1

ps
)−1

s−1∑
i=1

[VpsVpiUpsgi+VpsWpsVpigi] ∈ Sk(Γ0(N), χ).

It turns out that the right hand side is of length s− 1. (This is particularly easy
to see for the case s = 1.) �

Theorem 5.2.16 (Multiplicity One). Let 0 6= f(z) ∈ S]k(Γ0(N), χ) be an eigen-
function of all Hecke-operators Tn with (n,N) = 1. Then we have

(1) af (1;∞) 6= 0.

(2) If g ∈ S]k(Γ0(N), χ) is another eigenfunction of all Hecke-operators Tn with
(n,N) = 1. Suppose that λf (n) = λg(n) for all (n,N) = 1, then g ∈ Cf .
(Here Tnf = λf (n)f and Tng = λg(n)g.)

(3) f is automatically an eigenfunction of all Hecke eigenvalues. (Also of those
with (n,N) > 1!)

(4) We can normalize f so that af (1,∞) = 1, then we have af (m,∞) = λf (m)
for all m ∈ N. In particular, the Fourier coefficents of f at infinity are
multiplicative.

Proof. We start by observing that if af (1,∞) = 0, then by Lemma 5.2.10 we
have af (m,∞) = 0 for all (m,N) = 1. Applying the previous theorem yields
f ∈ S[k(Γ0(N), χ). This is a contradiction.

Thus from now on we can assume af (1,∞) = 1 so that af (m,∞) = λf (m) for
(m,N) = 1. Let g be as in (2). Without loss of generality we can assume that
ag(1,∞) = 1 as well. We observe then that the mth Fourier coefficient of f − g
vanish for (m,N) = 1. Thus we have f − g ∈ S[k(Γ0(N), χ). But this is another
contradiction.

Let Tn be any Hecke operator with n ∈ N. We put g = Tnf ∈ Sk(Γ0(N), χ).
Our goal is to show that g is a multiple of f (i.e. f is an eigenform of Tn.) Since
the Hecke operators commute we have Tmg = λf (m)g for all (m,N) = 1. We write

g = g] + g[ for g] ∈ S]k(Γ0(N), χ) and g[ ∈ S[k(Γ0(N), χ). We first observe that
Tmg

] = λf (n)g], so that g] ∈ Cf . It remains to be seen that g[ = 0. By definition
of the old-space and an inductive argument we can write

g[(z) =
∑

q|N ′|N,
N ′ 6=N

∑
M |N/N ′

ιN ′,M(hN ′,M) for hN ′,M ∈ S]k(Γ0(N ′), χ).

The hN ′,M are eigenfunctions of all Tm with (m,N) = 1. Note that they all have
the same Hecke-eigenvalues, namely λf (m) (for (m,N) = 1). Suppose there is
hN ′,M 6= 0, then we find α 6= 0 so that hN ′,M − αf ∈ S[k(Γ0(N), χ). But this
implies

f = −α−1(hN ′,M − αf) + α−1h ∈ S[k(N,χ),

which is a contradiction. �
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Definition 5.2.2. If f ∈ S]k(Γ0(N), χ) is an eigenfunction of all Hecke-operators
and af (1,∞) = 1, then we call f a newform.

Remark 5.2.17. The newforms form an orthogonal basis of S]k(Γ0(N), χ). Note
that the definition includes the so called arithmetic normalization af (1,∞) =
1. Another natural normalization would be 〈f, f〉 = 1. This is the analytic
normalization. Passing between the two normalizations is possible using the so
called Rankin-Selberg method and the scaling factor involved turns out to be a
rather interesting number associated to f .

Let us get back to (what we claimed to be) Hecke’s motivation. Given a Dirichlet
character ξ modulo M and f ∈Mk(Γ0(N), χ) we associate the twisted L-function

L(s, f, ξ) =
∞∑
n=1

ξ(n)af (n;∞) · n−
k−1

2
−s.

If f ∈ Sk(Γ0(N), χ), then this is absolutely convergent for Re(s) > 5/4. Indeed,
recall that by Theorem 4.2.2 we have46

|L(s, f, ξ)| ≤ Cf,ε

∞∑
n=1

n
1
4
−Re(s)+ε.

(With a bit more care or by using (91) which is known in the case under consid-
eration this can be improved to show absolute convergence for Re(s) > 1.)

Lemma 5.2.18. Suppose f is an eigenfunction of all Hecke operators, then we
have

L(s, f, ξ) = af (1;∞) ·
∏
p

(
1− ξ(p)λf (p)p−

k−1
2
−s + χ(p)ξ(p)2p−2s

)−1

in the region of absolute convergence.

Proof. First, we recall that by Lemma 5.2.10 we have af (n;∞) = λf (n)af (1;∞).
Since the Hecke-operators are multiplicative the fundamental theorem of arith-
metic implies that

L(s, f, ξ) = af (1;∞) ·
∏
p

(∑
k=0

[ξ(p)p−s]kλf (p
k)

)
Finally, the result follows by inductively using the recursion Tpk+1 = TpTpk −
χ(p)pk−1Tpk−1 given in (109). �

In particular, if f ∈ Sk(Γ0(N), χ) is a newform, then the associated (twisted)
L-function will have a nice Euler product involving only the Hecke eigenvalues

46Note that the statement of Theorem 4.2.2 does not directly apply to the situation at hand,
but the same argument gives the desired result.
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λf (p) and the values of the characters ξ and χ on primes. We will see now that
more is true.

Remark 5.2.19. We write L(s, f) = L(s, f, 1), where we wrote 1 for the principal
charter modulo 1. We also define

[ξ ⊗ f ](z) =
∞∑
n=1

ξ(n)af (n;∞).

Thus we can write

L(s, f, ξ) = L(s, ξ ⊗ f).

If f ∈ Sk(Γ0(N), χ) is a newform and ξ is a primitive character modulo M with
(M,N) = 1, then ξ ⊗ f is a scalar multiple of a newform in Sk(Γ0(M2N), χξ2).
This statement is slightly stronger than what will be needed below, so that we
leave the proof as an exercise.

Proposition 5.2.20. Let f ∈ Sk(Γ0(N), χ) and let ξ be a primitive Dirichlet
character modulo M with (M,N) = 1. Define

Λ(s, f, ξ) = (2π)−
k−1

2
−sΓ(

k − 1

2
+ s)L(s, f, ξ).

We have

Λ(s, f, ξ) = ikξ(N)χ(M)
τ(ξ)2

M
(M2N)

1
2
−sΛ(1− s, g, ξ−1).

Here g = N
k
2 f |kwN with wN =

(
0 −1
N 0

)
.

Proof. We first note that f |kwN ∈ Sk(Γ0(N), χ−1). To see this one notes that
wN normalizes Γ0(N). A direct computation shows the correct transformation
behavior:

f |kwN |kγ = f |kwNγw−1
N |kwN = χ(γ)−1f |kwN .

For notational simplicity we write g = f |kwN .
We start from the identity

ξ(n)e(nz) =
ξ(−1)τ(ξ)

M

∑
x mod M,
(x,M)=1

ξ(x)−1e(n
z + x

M
).

Thus

[ξ ⊗ f ](z) =
ξ(−1)τ(ξ)

M

∑
x mod M,
(x,M)=1

ξ(x)−1[f |kαx,M ](z) with αx,M =

(
M x
0 M

)
.
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This allows us to compute

[ξ ⊗ f ]|kwM2N(z) = (NM)−k
[
(ξ ⊗ f)|k

(
0 −1

MN
M 0

)]
(z)

=
ξ(−1)τ(ξ)

N
k
2M1+k

∑
x mod M,
(x,M)=1

ξ(x)−1 ·
[
g|k
(

0 1
−N 0

)(
M x
0 M

)(
0 −1

MN
M 0

)]
(z)

=
ξ(−1)τ(ξ)

N
k
2M1+k

∑
x mod M,
(x,M)=1

ξ(x)−1 ·
[
g|k
(

M −r
−Nx s

)(
M r
0 M

)]
(z),

where r = r(x) and s = s(x) are integers with Ms − rNx = 1. Note that
ξ(x)−1 = ξ(−N)ξ(r). Further we have

g|k
(

M −r
−Nx s

)
= χ(D)g.

Thus we get

[ξ ⊗ f ]|kwM2N(z) = χ(D)
ξ(N)τ(ξ)

N
k
2M1+k

∑
r mod M,
(r,M)=1

ξ(r) ·
[
g|k
(
D r
0 D

)]
(z)

= N−
k
2M−kχ(D)ξ(−N)

τ(ξ)

τ(ξ−1)
[ξ−1 ⊗ g](z)

= χ(D)ξ(N)
τ(ξ)2

N
k
2M1+k

[ξ−1 ⊗ g](z).

The triviality [ξ ⊗ f ] = [(ξ ⊗ f)|kwM2N ]|kw−1
M2N yields

[ξ ⊗ f ](iy) = iky−kχ(D)ξ(N)
τ(ξ)2

N
k
2M1+k

[ξ−1 ⊗ g]

(
i

NM2y

)
. (112)

We now compute∫ ∞
0

[ξ ⊗ f ](iy)y
k−1

2
+sdy

y
=
∞∑
n=1

ξ(n)af (n;∞)

∫ ∞
0

e(nz)y
k−1

2
+sdy

y
= Λ(s, f, ξ).

Note that this integral is convergent for all s, because f is a cusp form. Thus, it
defines an analytic function. To see the functional equation we use (112) to get

Λ(s, f, ξ) = ikχ(D)ξ(N)
τ(ξ)2

N
k
2M1+k

∫ ∞
0

[ξ−1 ⊗ g]

(
i

NM2y

)
y−

k+1
2

+sdy

y

= ikχ(D)ξ(N)(NM2)
1
2
−s τ(ξ)2

M

∫ ∞
0

[ξ−1 ⊗ g] (iy) y
k+1

2
−sdy

y

= ikχ(D)ξ(N)(NM2)
1
2
−s τ(ξ)2

M
Λ(s, g, ξ−1).
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There is much more to the theory of (integral weight) Hecke Operators than
what we can discuss here. Other important results are for example:

• (Strong Multiplicity One) Let f ∈ Sk(Γ0(N1), χ1) and g ∈ Sk(Γ0(N2), χ2)
be newforms. (In particular f and g are eigenfunctions of all Hecke opera-
tors.) Suppose there is M ∈ N such that λf (n) = λg(n) for all (n,M) = 1.
Then N1 = N2, χ1 = χ2 and f = g.
• We have the decomposition

Sk(Γ0(N), χ) =
⊕
q|N ′|N

⊕
f∈S]k(Γ0(N ′),χ),

newform

〈ιN ′,df : d | N
N ′
〉C,

where χ is a Dirichlet character modulo N of conductor q.
• (Weil’s Converse Theorem 1967) Let R be a set of integers with 1 ∈ R so

that for every (a, c) = 1 there is r ∈ R with r ≡ a mod c. Suppose that
(an)n∈N and (bn)n∈N are polynomial bounded sequences such that

Λ(s, (an), ξ) := (2π)−
k−1

2
−sΓ(

k − 1

2
+ s)

∞∑
n=1

anξ(n)

n
k−1

2
+s

= ikξ(N)χ(r)
τ(ξ)2

r
(r2N)

1
2
−s · (2π)s−

k+1
2 Γ(

k + 1

2
− s)

∞∑
n=1

bnξ
−1(n)

n
n+1

2
−s︸ ︷︷ ︸

:=Λ(1−s,(bn),ξ−1)

for every primitive Dirichlet character ξ modulo r with r ∈ R. Further as-
sume that Λ(s, (an), ξ) and Λ(s, (bn), ξ−1) are entire and bounded in vertical
strips. Then

f(z) =
∞∑
n=1

ane(nz) ∈ Sk(Γ0(N), χ) and g(z) =
∞∑
n=1

bne(nz) = N
k
2 f |kwN .

5.3. Hecke Operators for Half Integral weight. We define G to be the set of
pairs (γ, φ), where γ ∈ GL+

2 (Q) and φ : H→ C is a holomorphic function satisfying
φ(z)2 = ± cz+d√

det(γ)
. We turn G into a group by introducing the product

(α, φ)(β, ψ) = (αβ, z 7→ φ(βz)ψ(z)).

It is easy to see that G is really a group and one has the short exact sequence

1→ µ4 → G→ GL+
2 (Q)→ 1,

where µ4 is the group of fourth roots of unity. For k ∈ N we define the action

[f |̃k/2(g, φ)](z) = φ(z)kf(gz)

of (g, φ) ∈ G on functions f : H→ C.
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Throughout this section k ∈ N will be odd, so that k/2 is not an integer. Recall
that the basic theta multiplier ϑ◦th for weight 1

2
can be obtained by

ϑ◦th(γ)
√
cz + d = θ(γz)/θ(z),

where γ ∈ Γ0(4) and θ(z) =
∑

m∈Z e(m
2z) is the standard theta function. More

explicitly we have

ϑ◦th(γ) =
( c
d

)
εd, for γ =

(
a b
c d

)
∈ Γ0(4).

Remark 5.3.1. Note that for A ∈ SPk with odd k we have 2 | det(A), so that in
particular 2 | NA. Furthermore we have seen in Theorem 3.0.13 that

θ1,QA(z) ∈M k
2
(Γ0(2NA), ϑth).

Here the multiplier system ϑth depends on A and we have

ϑth(γ) =

(
det(A)

d

)
· ϑ◦th(γ)k.

We cover these spaces when we consider more generally M k
2
(Γ0(N), χ·(ϑ◦th)k) where

4 | N and χ is a Dirichlet character modulo N .

Given a congruence subgroup Γ = Γ0(N) ⊆ Γ0(4) we define its lift Γth to G by
setting

Γth = {γ̃ := (γ, z 7→ ϑ◦th(γ) ·
√
cz + d) : γ ∈ Γ}.

The transformation behaviour of f ∈M k
2
(Γ0(N), χ · (ϑ◦th)k) can be rephrased as

[f |̃k/2γ̃](z) = χ(d)f(z) for all γ ∈ Γ0(N).

One can now get to work and use this framework to implement an action of the

Hecke Algebra H(Γ0(N)th, ∆̃N) for a suitable semigroup ∆̃N . We will be more
concrete and consider only the necessary double co-sets in what follows.

Lemma 5.3.2. Take ξ = (α, φ) ∈ G and put Λ = α−1Γα ∩ Γ. (Recall that Λ has
finite index in Γ.) There is γ1 ∈ Γ so that γ = α−1γ1α ∈ Λ. Then we have

(1) γ̃ and ξ−1γ̃1ξ differ by an element (1, t) ∈ G with t = t(γ) ∈ µ4.
(2) The map γ 7→ t(γ) is a homomorphism from Λ to µ4, that does not depend

on φ.
(3) For (n,N) = 1 and α = diag(1, n) we have

t(γ) =
(n
d

)
for γ =

(
a b
c d

)
∈ Λ.

Proof. See the exercise below. �
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Exercise 2, Sheet 10: We define G to be the set of pairs (γ, φ), where γ ∈
GL+

2 (Q) and φ : H → C is a holomorphic function satisfying φ(z)2 = ± cz+d√
det(γ)

.

We turn G into a group by introducing the product

(α, φ)(β, ψ) = (αβ, z 7→ φ(βz)ψ(z)) (113)

a) Check that G is a group and show that we have a short exact sequence

1 µ4 G GL+
2 (Q) 1

Given a congruence subgroup Γ = Γ0(N) ⊂ Γ0(4) we define its lift Γth to G by
setting

Γth := {γ̃ := (γ, z 7→ ϑ◦th(γ)
√
cz + d) : γ ∈ Γ}.

Take ξ = (α, φ) ∈ G and put Λ := α−1Γα∩ Γ (recall that Λ has finite index in Γ).
For any γ ∈ Λ there is γ1 ∈ Γ so that γ = α−1γ1α.

b) Show that γ̃ and ξ−1γ̃1ξ differ by an element (1, t) ∈ G with t = t(γ) ∈ µ4.
c) Show that the map γ 7→ t(γ) is a homomorphism from Γ to µ4, that does

not depend on φ.
d) For (n,N) = 1 and α = diag(1, n) we have

t(γ) =
(n
d

)
for γ =

(
a b
c d

)
∈ Γ.

Solution. Clearly (I2, const1) is a unit for the operation. Given (α, φ) ∈ G, its
inverse is given by (α−1, φ(α−1·)−1). This element is in G since

φ(α−1z)2 = ±jα(α−1z)√
det(α)

= ±

(
jα−1(z)√
det(α−1)

)−1

where we used the cocycle identity jαβ(z) = jα(βz)jβ(z) for β = α−1. To check
associativity, we compute

((α, φ)(β, ψ)) (γ, ζ) = (αβ, φ(β·)ψ(·))(γ, ζ) = (αβγ, φ(βγ·)ψ(γ·)ζ(·))

and similarly

(α, φ) ((β, ψ)(γ, ζ)) = (α, φ)(βγ, ψ(γ·)ζ(·)) = (αβγ, φ(βγ·)ψ(γ·)ζ(·)).

To obtain the exact sequence, note that (α, φ) 7→ α is clearly a group homomor-
phism of G into GL+

2 (Q). To see surjectivity, let γ ∈ GL+
2 (Q) arbitrary and note

that H is simply connected, so that any non vanishing holomorphic function has a

square root. In particular, this holds for z 7→ jγ(z)√
det(γ)

, and we can find φ holomor-

phic on H such that φ(z)2 = jγ(z)√
det(γ)

, showing that (γ, φ) ∈ G. That the kernel

of the map is isomorphic to µ4 is clear, since the kernel consists of all functions φ
such that φ2(z) = ±1, equivalently φ4(z) = 1, and since H is connected, it must
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be that φ equals everywhere a fixed fourth root of unity.

After Γth has been introduced, first note that γ 7→ γ̃ is a group homomorphism
from Γ to Γth. Indeed, one checks immediately that

γ̃1γ̃2 = (γ1γ2, z 7→ ϑ◦th(γ1)ϑ◦th(γ2)jγ1(γ2z)1/2jγ2(z)1/2)

= (γ1γ2, z 7→ ϑ◦th(γ1γ2)jγ1γ2(z)1/2).

The last equality follows from the fact that ϑ◦th is a multiplier system of weight
1/2 for Γ0(4). To obtain part b), note that the image of γ̃ and ξ−1γ̃1ξ to GL+

2 (Q)
agree. By the exact sequence above, it must be that γ̃ = tξ−1γ̃1ξ for some t ∈ µ4.
It is very important to observe that µ4 ⊂ Z(G), the centre of G. Indeed, for any
constant c ∈ {±1,±i} we have

(I2, c)(α, φ) = (α, cφ) = (α, φ)(I2, c).

In particular, this shows that it doesn’t matter whether we write γ̃ = tξ−1γ̃1ξ or
γ̃ = ξ−1γ̃1ξt.

If φ is replaced by φ′ such that both ξ = (α, φ) and ξ′ = (α, φ′) are in G, the
exact sequence above implies that ξ′ = tξξ for some tξ ∈ µ4. Since µ4 is central in
G, we deduce that

(ξ′)−1γ̃1ξ
′ = ξ−1t−1

ξ γ̃1tξξ = ξ−1γ̃1ξ.

Therefore, t(γ) does not depend on φ. Finally, to show that γ 7→ t(γ) it is a
homomorphism from Λ to µ4, let γ, δ ∈ Λ, with γ1, δ1 defined as above. Note that
(γδ)1 = γ1δ1, since conjugation is an homomorphism. By definition,

γ̃ = t(γ)ξ−1γ̃1ξ and δ̃ = t(δ)ξ−1δ̃1ξ.

We have γ̃δ = γ̃δ̃, and also γ1δ1 = (γδ)1 and thus also γ̃1δ̃1 = γ̃1δ1 = (̃γδ)1, and
since µ4 is central in G, we arrive at

γ̃δ = t(γ)t(δ)ξ−1(̃γδ)1ξ

which proves part c). Finally, for part d), since jα(z) = n and
√

det(α) =
√
n, we

can choose ξ = (α, n1/4). We calculate at once that Λ := α−1Γ0(N)α ∩ Γ0(N) =
Γ(N, n), which is defined as

Γ(N, n) :=

{(
a nb
Nc d

)
| a, b, c, d ∈ Z and ad− nNbc = 1

}
.

For γ ∈ Λ, we have

γ =

(
a nb
Nc d

)
and then γ1 = αγα−1 =

(
a b

Nnc d

)
We obtain

ξ−1γ̃1ξ = (α−1γ1, z 7→ n−1/4ϑ◦th(γ1)jγ1(z)1/2)(α, n1/4) = (α−1γ1α, z 7→ ϑ◦th(γ1)jγ1(αz)1/2).



ADVANCED ALGEBRA 1: MODULAR FORMS 174

On the other hand
γ̃ = (γ, z 7→ ϑ◦th(γ)jγ(z)1/2).

Since αz = z/n, it follows that jγ1(αz) = Nncz/n + d = Ncz + d = jγ(z).
Therefore, t(γ) = ϑ◦th(γ)ϑ◦th(γ1)−1. Since ϑ◦th(γ) =

(
Nc
d

)
εd and ϑ◦th(γ1) =

(
Nnc
d

)
εd,

we deduce that

t(γ) =
(n
d

)
as desired. �

For f ∈Mk/2(Γ0(N), χ · (ϑ◦th)k) and (n,N) = 1 we put

ξn =

((
1 0
0 n

)
, n

1
4

)
∈ G.

The action of the double co-set generated by ξn acts on f by

T̃nf(z) = n
k
4
−1[f |Γ0(N)thξnΓ0(N)th](z) = n

k
4
−1
∑
i

χ(αi)
−1[f |̃ k

2
α̃i](z),

where
Γ0(N)thξnΓ0(N)th =

⊔
i

Γ0(N)thα̃i.

Theorem 5.3.3. For (n,N) = 1 and n not a perfect square, we have T̃n = 0.

Proof. Put α = diag(1, n), Λ = α−1Γ0(N)α∩Γ0(N) and let t : Λ→ µ4 be the map

from lemma 5.3.2. Further let K = ker(t) and Λ̃ = ξ−1
n Γ0(N)thξn ∩ Γ0(N)th. We

claim that Kth = Λ̃:

• ⊇: Take γ̃ = ξ−1
n γ̃1ξn ∈ Λ̃. Then γ = α−1γ1α ∈ Λ and γ̃(1, t(γ)) = ξ−1

n γ̃1ξn
by definition of t(γ). This implies t(γ) = 1 as desired.

• ⊆: For γ ∈ K ⊆ Λ we clearly have γ̃ = ξ−1
n γ̃1ξn ∈ Λ̃.

From here we observe that K = Λ if and only if t is trivial if and only if n is a

perfect square. Thus, if n is not a perfect square, then Λ̃ = Kth has index two in
Λth. Thus we can write

Λth = Λ̃ ∪ Λ̃τ̃ for τ̃ = ξ−1
n τ̃1ξn · (1,−1), and τ1 ∈ Γ0(N).

Furthermore, if we choose representatives γj for Λ\Γ0(N), then we have

Γ0(N)th =
⊔
j

Λ̃γ̃j t
⊔
j

Λ̃τ̃ γ̃j

so that
Γ0(N)thξnΓ0(N)th =

⊔
j

Γ0(N)thξnγ̃j t
⊔
j

Γ0(N)thξnτ̃ γ̃j.

Since k is odd we have f |̃k/2(1,−1) = −f . We conclude the proof by observing
that

f |̃k/2ξnτ̃ γ̃j = −f |̃k/2ξnγ̃j.
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Analogously to the integral case it can be seen that the operators T̃p2 for primes
(p,N) = 1 commute and generate the algebra

〈T̃p2 : (p,N) = 1, prime〉C = 〈T̃n2 : (n,N) = 1, n ∈ N〉C.

As in the integral case we can express the action of T̃p2 on a modular form in
terms of Fourier coefficients:

Proposition 5.3.4. Let f ∈M k
2
(Γ0(N), χ · (ϑ◦th)k). Then we have

aT̃p2f
(n;∞) = af (p

2n;∞)+χ(p)

(
(−1)

k−1
2 n

p

)
p
k−3

2 af (n;∞)+δp2|nχ(p2)pk−2af (
n

p2
;∞),

for (p,N) = 1.

Proof. The argument is more involved than in the integral weight case and we omit
the proof. �

Corollary 5.3.5. Let f ∈ M k
2
(Γ0(N), χ · (ϑ◦th)k) be an eigenfunction of T̃p2 with

eigenvalue λf (p
2). Suppose p - N and p2 - m. Then we have

∞∑
n=0

af (mp
2n;∞)Xn = af (m;∞) ·

1− χ(p)

(
(−1)

k−1
2 m
p

)
p
k−3

2 X

1− λf (p2)X + χ(p2)pk−2X2
. (114)

Proof. Using the result above we can compare Fourier Coefficients of T̃p2f =
λf (p

2)f to deduce

λf (p
2)af (m;∞) = af (mp

2;∞) + p
k−3

2 χ(p)

(
(−1)

k−1
2 m

p

)
af (m;∞) and

λf (p
2)af (mp

2n;∞) = af (mp
2(n+1);∞) + p

k−3
2 χ(p)

(
(−1)

k−1
2 m

p

)
af (mp

2n;∞)

+ pk−2χ(p2)af (mp
2(n−1);∞).

Now the claimed result can be seen easily by multiplying both sides of (114) with
1− λf (p2)X + χ(p2)pk−2X2 and comparing coefficients. �

Remark 5.3.6. It is a remarkable theorem due to G. Shimura (1973) that for f ∈
S k

2
(Γ0(N), χ · (ϑ◦th)k) such that T̃p2f = λf (p

2)f for all primes p there is Sf ∈
M k−1

2
(Γ0(N/2), χ2) such that TpSf = λf (p

2)Sf for all primes p. Even more, If

k ≥ 5, then Sf is a cusp form. Note that one can relax the statement to apply to
eigenforms of almost all Hecke Operators.
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As usual Hecke operators that interfere with the level behave slightly different.
It turns out that, if p | N , then

aT̃p2f
(n;∞) = af (p

2n).

Furthermore, if 4p | N , then we can define an operator

T̃p : M k
2
(Γ0(N), χ · (ϑ◦th)k)→M k

2
(Γ0(N), χpχ · (ϑ◦th)k)

by

T̃pf(z) = p−1

p−1∑
j=0

f

(
z + j

p

)
.

One checks that aT̃pf (n;∞) = af (pn;∞). We also define the shift operator

Vpf(z) = f(pz).

This operator maps M k
2
(Γ0(N), χ · (ϑ◦th)k) to M k

2
(Γ0(Np), χχp · (ϑ◦th)k), where χp

is the unique quadratic character of conductor p.
It is again an interesting question to see if one can find a basis of eigenfunctions

for all Tp2 with p - N . For the subspace of cusp forms one can run the same
argument as in the integral weight case using the Petersson inner product. On the
other hand (at least for k

2
> 2) the complement can be understood using Eisenstein

series.
However for weight 1

2
there is a particularly nice argument, which we will now

sketch.

Lemma 5.3.7. There is a basis of M 1
2
(Γ0(N), χ ·ϑ◦th) consisting of eigenforms for

all the Tp2 with p - N .

Proof. For weight 1
2

it turns out that the Petersson inner product

〈f, g〉 =

∫
Γ0(N)\H

f(z)g(z) Im(z)−
3
2dz

is defined for f, g ∈M 1
2
(Γ0(N), χ·ϑ◦th).47 Since the Hecke operators T̃p2 for (p,N) =

1 still satisfy

〈T̃p2f, g〉 = χ(p2)〈f, T̃p2g〉,
we can diagonalize the full space at once (without considering Eisenstein series
separately). �

Lemma 5.3.8. Let f ∈ M 1
2
(Γ0(N), χ · ϑ◦th) be non-zero and let p be a prime not

dividing N . Suppose that T̃p2f = λf (p
2)f . For m ∈ N with p2 - m we have

(1) af (mp
2n;∞) = af (m;∞)χ(p)n

(
m
p

)n
for every n ≥ 0.

47This was observed by Deligne and is a numerical coincidence.
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(2) We have λf (p
2) = χ(p)

(
m
p

)
(1 + p−1).

Proof. We will use the following two facts:

(1) There is a basis for M k
2
(Γ0(N), χ · (ϑ◦th)k) of forms with Fourier coefficients

in some number field.
(2) If f ∈M k

2
(Γ0(N), χ · (ϑ◦th)k) and the Fourier coefficients af (n;∞) are alge-

braic numbers, then they have bounded denominators.

By the first point we can assume that the Fourier Coefficients of f are algebraic.

Put α = χ(p)
(
m
p

)
p−1, β + γ = λf (p

2) and βγ = χ(p2)p−1. Then, by (114) we get

A(X) =
∞∑
n=0

af (mp
2n;∞)Xn = af (m;∞)

1− αX
(1− βX)(1− γX)

.

For p2 - m. If af (m;∞) = 0, then af (mp
2n;∞) = 0 for all n. Since f 6= 0 we

can assume that af (m;∞) 6= 0. By the first fact above we can view A(T ) as
a power series with coefficients in some finite (sufficiently large) extension Kp of
Qp. By the second fact the coefficients have bounded denominators, so that A(T )
converges absolutely for X in the unit disc Up of Kp. In particular A(T ), which
we have seen is a rational function in X can not have a pole in Up. But, since
βγ = χ(p2)p−1 ∈ Up, one of the numbers β−1 or γ−1 must lie in Up. Lets say
γ−1 ∈ Up, then we must have α = γ such that

A(X) = af (m;∞)(1− βX)−1 = af (m;∞) ·
∞∑
n=0

βnXn.

By comparing coefficients we find that af (mp
2n;∞) = βnah(m;∞). It is easy to

see that β = χ(p)
(
m
p

)
. We conclude that

af (mp
2n;∞) = χ(p)n

(
m

p

)n
af (m;∞). (115)

We deduce that λf (p
2) = β + γ = α + β = χ(p)

(
m
p

)
(1 + p−1). It is also easy to

see now that if af (m;∞) 6= 0, then p - m so that λf (p
2) 6= 0. �

The theory of newforms turns out to be difficult and not as satisfying as in the
integral weight case. Nonetheless there are some interesting aspects to it.

Definition 5.3.1. Let f ∈M k
2
(Γ0(N), χ · (ϑ◦th)k) be an eigenfunction of almost all

operators T̃p2 . We say that f is an oldform if there exists a prime p | N
4

such that
(exactly) one of the following holds:

• χ is defined modulo N/p and f ∈M k
2
(Γ0(N/p), χ · (ϑ◦th)k);

• χ · χp is definable modulo N/p and f = Vpg with g ∈ M k
2
(Γ0(N/p), χχp ·

(ϑ◦th)k).
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The space spanned by all oldforms will be denoted by M [
k
2

(Γ0(N), χ · (ϑ◦th)k). If

f 6∈ M [
k
2

(Γ0(N), χ · (ϑ◦th)k) is an eigenfunction of almost all Hecke Operators T̃p2 ,

then f is said to be a newform.48

It is not difficult (but technical) to prove the following statements:

• If h ∈ M [
k
2

(Γ0(N), χ · (ϑ◦th)k) is non-zero, then there is a divisor N ′ | N ,

a character χ′ modulo N ′ and a newform g ∈ M k
2
(Γ0(N ′), χ′ · (ϑ◦th)k) such

that h and g have the same eigenvalues for all but finitely many T̃p2 .
• Let f ∈ M k

2
(Γ0(N), χ · (ϑ◦th)k) be non-zero so that af (n;∞) = 0 unless

p | n. Then p | N
4

, χχp is defined modulo N/p and f = Vpg for some

g ∈M k
2
(Γ0(N/p), χχp · (ϑ◦th)k).

• Let f ∈M k
2
(Γ0(N), χ·(ϑ◦th)k) such that af (n;∞) = 0 for all n with (n,m) =

1. Then we can write f as

f =
∑
p|m,
4p|N

Vpgp

with gp ∈M k
2
(Γ0(N/p), χχp·(ϑ◦th)k). (This is comparable to Theorem 5.2.15.)

In general the theory has its complications. However in the next section we will
focus on the case of weight 1

2
and see that there some interesting results can be

proven.

6. Finale: The Serre-Stark Theorem

The Serre-Stark theorem gives an explicit basis for the space M 1
2
(Γ0(4N), χ·ϑ◦th).

Among other things this allows one to explicitly compute these spaces of modular
forms.

Given t ∈ Z we attach a character χt as follows. First, if t is a perfect square,
then χt = 1 is the trivial character. Otherwise put

χt(m) =

(
D

m

)
,

where D is the discriminant of Q(
√
t) (over Q). In particular χt is quadratic and

has conductor D.
Using Proposition 3.0.7 one can show that

θ(z; ξ, t) :=
∑
n∈Z

ξ(n)e(tn2z) ∈M 1
2
(Γ0(4q2t), χtξ · ϑ◦th),

48Recall that in the integral weight case a newform was assumed to be normalized so that the
first Fourier Coefficient is 1. This is not assumed here.
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where ξ is an even primitive character modulo q = q(ξ). The details are left as an
Exercise.

We define the set

Ω(N,χ) = {(ξ, t) : 4q(ξ)2t | N and χ(n) = ξ(n)χt(n) for all (n,N) = 1}.
We now have the following result.

Theorem 6.0.1 (Serre-Stark 1976). The theta series θ(z; ξ, t) with (ξ, t) ∈ Ω(N,χ)
form a basis of M 1

2
(Γ0(N), χ · ϑ◦th).

Remark 6.0.2. With a bit more work one can find a subset Ωc(N,χ) ⊆ Ω(N,χ) such
that the theta series θ(z; ξ, t) with (ξ, t) ∈ Ωc(N,χ) form a basis for S 1

2
(Γ0(N), χ).

Even though this has man interesting implications unfortunately we have no time
to discuss this any further.

Before we can prove the theorem we to understand the structure of newforms for
weight 1

2
. We start with a simple observation concerning the action of the Hecke

Operators:

Proposition 6.0.3. Let 0 6= f ∈ M 1
2
(Γ0(N), χ · ϑ◦th) and let N | D. Suppose

that f is an eigenfunction of all Hecke Operators T̃p2 with p - D. Then there is
a unique square-free integer t ≥ 1 such that af (n;∞) = 0 if n/t is not a square.
Furthermore we have

• t | D;

• λf (p2) = χ(p)
(
t
p

)
(1 + p−1) for p - D; and

• af (nu2;∞) = af (n;∞)χ(u)
(
t
u

)
if (u,D) = 1 and u ≥ 0.

Proof. Suppose af (m;∞) 6= 0 and af (m
′∞) 6= 0. The by (115) we get

χ(p)

(
m

p

)
(1 + p−1) = λf (p

2) = χ(p)

(
m′

p

)
(1 + p−1),

for all primes p - Dmm′. Thus
(
m
p

)
=
(
m′

p

)
for all these primes. It is clear

that this implies that m/m′ is a square. The first part of the statement (i.e. the
existence of t) follows directly. The remaining properties are also easily derived
from the properties of cp mentioned below (115). �

A direct consequence of this is the following.

Corollary 6.0.4. If af (1;∞) 6= 0, then t = 1 and λf (p
2) = χ(p)(1 + p−1) for

p - D.

Now let us consider a newform f ∈ M 1
2
(Γ0(N);χϑ◦th). Let t denote the unique

square-free integer t ≥ 1 such that af (n;∞) = 0 unless n/t is a square.

Lemma 6.0.5. We have af (1;∞) 6= 0 and t = 1.
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Proof. Suppose af (1;∞) = 0, then an argument from earlier shows that af (n;∞) =
0 for all (n,D) = 1. But this implies that f is an oldform, which is a contradiction.
It is clear that if af (1;∞) 6= 0 we must have t = 1. �

We are now in the situation to obtain a result that is familiar from the theory
of integral weight:

Lemma 6.0.6. Let g ∈M 1
2
(Γ0(N), χϑ◦th) be an eigenfunction of all Hecke Opera-

tors T̃p2 with (p,D) = 1. If λf (p
2) = λg(p

2) for all p - D, then g ∈ Cf .

Proof. The proof is left as an Exercise. �

Lemma 6.0.7. The newform f is an eigenform of T̃p2 for every prime p. Further,
we have

Df (s) :=
∞∑
n=1

af (n;∞)n−s =
∏
p|N

(1− λf (p2)p−2s)−1 ·
∏
p-N

(
1− χ(p)p−2s

)−1
.

If 4p | N , then λf (p
2) = 0.

Proof. That f is an eigenform of all T̃p2 is clear by applying the previous Lemma

to g = T̃p2f .
Next, we note that according to Proposition 6.0.3 we can write

∞∑
n=1

af (n;∞)n−s = t−s

∑
n|D∞

af (tn
2;∞)n−2s

 ·∏
p-D

(
1− χ(p)

(
t

p

)
p−2s

)−1

.

Using that t = 1 as well as (115) gives the desired Euler Product.
If 4p | N we observe that

T̃pf(z) =
∞∑
n=0

af (np;∞)e(nz) =
∞∑
n=0

af (n
2p2)e(n2p) = λf (p

2)Vpf(z) ∈M 1
2
(Γ0(N), χpχϑ

◦
th).

If λf (p
2) 6= 0 one deduces f ∈M 1

2
(Γ0(N/p), χϑ◦th). This is a contradiction. �

We are now ready to prove the following key result:

Proposition 6.0.8. If f ∈M 1
2
(Γ0(N), χϑ◦th) is a newform and q is the conductor

of χ, then N = 4q2 and f(z) =
af (1;∞)

2
θ(z;χ, 1).

Proof. Without loss of generality we assume that af (1;∞) = 1. Note that the
Dirichlet series Df (s) converges for Re(s) sufficiently large. Similarly we define

Df (s) =
∞∑
n=1

af (n)n−s.
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Mimicking the proof of Proposition 5.2.20 we obtain49

(2π)−sΓ(s)Df (s) = η ·
(

2π

N

)−( 1
2
−s)

Γ(
1

2
− s)Df (

1

2
− s).

Note that we are using that

η · f(−z) = [f |̃ 1
2
(wN , N

1
4 (−iz)

1
2 )](z).

We also obtain a meromorphic continuation. However, since f is not assumed to
be a cusp-form we may have a simple pole at 1

2
. consider

L(2s, χ) =
∞∑
n=1

χ(n)n−2s.

It is well known that this Dirichlet L-functions satisfies the functional equation

(2π)−sΓ(s)L(2s, χ) = η′
(

2π

4q2

)−( 1
2
−s)

Γ(
1

2
− s)L(1− 2s, χ−1).

Taking the quotient we obtain∏
p|M

(
1− λf (p2)p−2s

1− χ(p)p−2s

)
=
L(2s, χ)

Df (s)
=
η′

η

(
4q2

N

) 1
2
−s∏

p|M

(
1− λf (p2)p2s−1

1− χ−1(p)p2s−1

)
.

(116)
Here M is the product of primes where χ(p) 6= λf (p

2).
If χ(p) 6= 0 for p |M , then the left hand side of (116) has infinitely many poles

on the lune Re(s) = 0. But the right hand side can have at most finitely many.
Thus we have χ(p) = 0 for p |M (i.e. p | q). Since λf (p) 6= χ(p) = 0 we can write∏

p|M

(1− λf (p2)p−2s) =
η′

η

(
4q2

N

) 1
2
−s∏

p|M

(
−λf (p

2)

p
p2s(1− p

λf (p2)
p−2s)

)
.

Looking at the zeros on vertical lines one deduces that |λf (p2)|2 = p. We get

η′

η

(
4q2

NM2

) 1
2
−s∏

p|M

(
−λf (p2)

)
= 1.

In particular 4q2 = M2N . Recall that λf (p
2) = 0 for 4p | N . Thus the only

possibility is M = 1 or M = 2. Note that M = 2 can only occur if 8 - N and 4 | q.
But this is a contradiction to 8 - N since 4q2 = M2N = 4N . Thus M = 1 so that
N = 4q2.

The point of this argument was that we now obtain

Df (s) = L(2s, χ).

49Note that here the coefficients are normalized differently, so that the center of the functional
equation is slightly shifted.
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By comparing coefficients we find that f − 1
2
θ(z;χ, 1) is a constant. However it is

still a modular form of weight 1
2
. We conclude that f − 1

2
θ(z;χ, 1) = 0 and the

proof is complete. �

Proof of Theorem 6.0.1. We first show linear independence. Suppose we have a
linear combination

λ1θ(z; ξ1, t1) + . . .+ λkθ(z; ξm, tm) = 0

with (ξi, ti) ∈ Ω(N,χ). Note that ti determines ξi and each t ∈ Z occurs as the
second entry of at most one (ξ, t) ∈ Ω(N,χ). Without loss of generality we can
assume that t1 < . . . < tm and λi 6= 0 for i = 1, . . . ,m. Looking at the t1th-Fourier
coefficient gives 2λ1 = 0. (This is because aθ(·,ξ1,t1)(t1;∞) = 2.)

To see that the theta series θ(z, ξ, t) with (ξ, t) ∈ Ω(N,χ) generate the full space
is slightly harder, but we have done most of the work. By Lemma 5.3.7 it suffices

to show that every eigenfunction f of all T̃p2 with (p,N) = 1 linear combinations
of θ(z, ξ, t). If f is a newform we are done by Proposition 6.0.8. Thus we can
assume that f is an oldform. Here we have to consider two cases

• If χ is defined modulo N/p and f belongs to M 1
2
(Γ0(N/p), χ · ϑ◦th). In this

case we conclude by induction.
• Otherwise χ · χp is defined modulo N/p and

f = Vpg for some g ∈M 1
2
(Γ0(N/p), χχp · ϑ◦th).

By induction we can write g as a linear combination of θ(z; ξ, t) with (ξ, t) ∈
Ω(N/p, χχp). But this implies that f is a linear combination of θ(z; ξ, tp).

This completes the proof. �
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