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1. Introduction

An elliptic surface is a smooth surface X that admits a connected, proper morphism
f : X → C from onto a smooth curve C such that a general fiber is an elliptic curve.

Elliptic surfaces form an interesting class of varieties for various reasons.
There are plenty of examples: Every surface of Kodaira dimension 1 is elliptic. A K3

surface, with a divisor D 6= 0 satisfying D2 = 0 admits an elliptic fibration. Also elliptic
curves over Spec(Z) are examples of elliptic surfaces.

An elliptic surfaces (with a section) has a convenient representation as Weierstraß-model,
that is a birational map to a surface in P

2 × C, given by an explicit equation. As a first
application we will see, how to classify the singular fibers of f . Moreover it is possible to
analyze the topology of X in a very direct way. One can compute monodromies, homology
classes, and their intersections (e.g. [NS94]).

The irreducible components of the (singular) fibers of f provide us with many interesting
divisors of X. A theorem of Shioda and Tate states that the remaining part of NS(X)
is controlled by the Mordell–Weil group of sections of f . In some case this is enough to
compute the whole Neron–Severi group of X (e.g. [Dol96], p.28).

Hence elliptic surfaces are not only an interesting topic with rich theory but also a useful
technique for the real life of an algebraic geometer. In this Kleine AG we will try to learn
some of this techniques mentioned above. In the last talk we will touch upon a more recent
result by Brigeland [Bri98], which gives derived equivalences between an elliptic surface and
some associated moduli spaces (like the jacobian). For this we will have to assume familiarity
with derived categories and Fourier–Mukai transformations. The remaining talks will get
by with standard algebraic geometry knowledge. As a preparation for the workshop we
encourage the participants to read the excellent survey in the Encyclopedia of Mathematical
Sciences by Shafarevich et. al. [IS89].

2. The Program

1. Lecture (45 min.): Weierstraß-Models and Degeneration. ([MS72] Chapter 3,
[SS09] Section 4)
Given an elliptic curve (E,O), one can use the very ample line bundle OE(3O) to obtain an
embedding of E into P

2. This embedding is given by a certain Weierstraß-equation for E.
This theory generalizes in a natural way to elliptic surfaces with section. This is done in
[MS72] Chapter 3, after definition 1. In the reference, the fibration is assumed to be smooth,
but it is enough to assume that the fibration is flat and the generic fiber is elliptic. Given
X → C with section s : C → X, we want to see how we can find a Weierstraß-Model of X
given by a relative Weierstraß equation inside some projective space P(F) where F is some
rank three bundle over C ([MS72] Theorem 1’).
The Weierstraß-Model is always normal, but in general singular. We are now going to study
what kind of singularities appear and how to resolve them. Our reference will be [SS09,
Sections 4.1 - 4.3]. This question is of local nature, so we take the base to be the spectrum of
a discrete valuation ring. If the Weierstraß-Model is minimal, we are dealing with rational
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double point singularities. Those are classified by the Dynkin diagrams of their resolution
graphs. It would be nice to see some of those. We also want to understand the difference
between additive and multiplicative reduction, and see an example for the resolution of a
bad fiber by blowups, i.e an working example of the Tate-Algorithm.

2. Lecture (45 min.): Jacobians and classification results over C. ([BPV84], V.9-
11.) In this section we work over the complex numbers. So an elliptic fibration is for us
a proper, connected, holomorphic map f : X → C form a smooth surface onto a smooth
curve, such that the general fiber is non-singular elliptic.

In this setting we can construct the relative jacobian as Jac(f) := R1f∗OX/R1f∗ZX .
This works literally only over the regular part. Explain how to use a stable reduction, and
the explicit description of the monodromy around a stable fiber to extend the jacobian to
the singular fibers. You will have to recall this techniques form the earlier chapters.

If f admits a section the jacobian is birational to X. Proof this (easy).
We now want to see how to the jacobian can be used to classify elliptic surfaces (without

multiple fibers). Introduce the homological invariant R : π1(Creg) → SL(2, Z), and the
functional invariant J : Creg → C = SL(2, Z)\H.

For given invariants J and R there is a unique elliptic fibration f admitting a sec-
tion. Moreover the set F (J,R) of elliptic fibrations with this invariants is isomorphic to
H1(S, Jac(f)), the first homology group of the sheaf of holomorphic sections in the jaco-
bian. We will not have time to proof this in detail, but give at least the main ideas.

3. Lecture (45 min.): Relations to the theory of surfaces. ([Băd01] Section 7,8) In
the theory of surfaces, those fibered in elliptic curves, play an important role. Most promi-
nently for every surface of Kodaira dimension one, the Stein factorization of the canonical
map gives a elliptic fibration.
All references in this section are taken from [Băd01]. We begin with the definition of a curve
of canonical type (Definition 7.7), and see why fibers of elliptic fibrations are examples. Next
state the partial converse Theorem 7.11 and Corollary 7.13.
Now we shift our attention to the canonical sheaf of a elliptic surface: we want to under-
stand the canonical bundle formula (Theorem 7.15) and see a sketch of the proof. As an
application we have Theorem 8.1 and Remark 8.3. To end with an concrete example, give
an overview about hyperelliptic surfaces. (Theorem 8.10 and Section 10.24).

4. Lecture (45 min.): The Néron-Severi lattice of an elliptic surface. [SS09,
Chapter 6] It is a deep theorem of arithmetics, that the Mordell-Weil group of an elliptic
curve over a number field is finitely generated. We are going to show the same for elliptic
surfaces with sections, by using geometric arguments, especially the Néron-Severi lattice.
This talk covers chapter 6 of [SS09]. We make the assumption that our fibrations are not
of product type, which is implied by the existence of at least one singular fiber.
We start out with the definition of the Mordell-Weil group and Néron-Severi group. Our
aim is to proof Theorem 6.1. The argumentation goes as follows: Showing that numerical
and algebraic equivalence coincide, we get at once that NS(X) is finitely generated. Now
we realize the Mordell-Weil group as a quotient of NS(X) by the trivial lattice (6.7), and
we are done.
The formula 12χ(X) = e(X) > 0 from (6.11) and the expression of e(X) by the fiber types
(6.10) are of independent interest. The final result is Corollary 6.13, showing that ρ(X) can
be computed by counting fiber components and adding the Mordell-Weil rank.
If time allows it, one can do the example (6.12).
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5. Lecture (45 min.): Relative moduli spaces and Fourier–Mukai transforms.
Atiyah showed, that the the components of the moduli space of stable sheaves of coprime
rank r > 0 and degree d on an elliptic curve C, are again elliptic curves isomorphic to C.

Given an elliptic surface f : X → C over the complex numbers, there are relative versions
of these moduli spaces which give us elliptic surfaces Y = JX(r, d) → C, for any pair r, d as
above. Note that Jac(f) = JX(1, 0).

Moreover there are tautological sheaves P on X ×Y supported on X ×C Y which induce
Fourier–Mukai transforms

ΦP : Db(Y ) → Db(X)

that turn out to be equivalences of categories. This results were proved by Bridgeland in
his PHD thesis [Bri98].

In the talk we want to see (a sketch of) the construction of JX(r, d) as relative moduli
space of stable 1-dimensional sheaves on X. This is explained in the first few lines of Section
4.2, however no details are given so one need to look at the literature to see what M(X/C)
really is ([Sim94] or [HL96]) and how to obtain a universal sheaf ([Muk87], A.6). It follows
then easily, that JX(r, d) is connected and an elliptic surface.

It remains to show, that the induced Fourier–Mukai transform ΦP is indeed an equiva-
lence. We use the Bondal–Orlov criterion ([Bri98], Theorem 2.1) to show fully-faithfulness.
As this only involves the fibers Py which are stable sheaves on an elliptic curves this is not
hard (see Section 4.2). The essential surjectivity is easy nowadays. We can directly apply
the criterion Bridgland gave later in 1999 (see [Huy06] 7.11) to shortcut the arguments in
the paper. Maybe it is possible to indicate a proof of the criterion?
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