Submit the solutions in groups of two at the lecture on Tuesday, 2018-07-03

Exercise 1. Show that the $L^p \to L^q$ results for the averaging operator

$$Af(y) = \int_{\partial B(y,1)} f(x) \, d\sigma(x)$$

can only hold when $(1/p, 1/q) \in T$ where T is the closed triangle with vertices (0, 0), (1, 1) and $(\frac{d}{d+1}, \frac{1}{d+1})$. Do this in \mathbb{R}^3 following the instructions given below.

- (a) Suppose f(x) vanishes for small x and $f(x) > |x|^{-r}$, for |x| > 1. Use this function to verify that $p \le q$ must hold (the side of the triangle joining (0,0) and (1,1)).
- (b) Next let $f = 1_{B(0,\delta)}$. Verify $||f||_{L^p} \approx \delta^{3/p}$ and $||Af||_{L^q} \gtrsim \delta^{2+1/q}$. Use this to conclude one of the restrictions on (1/p, 1/q) coming from the lower sides of the triangle.
- (c) Use duality and (b) to finish the proof.

Exercise 2. Let a compact hypersurface $M = \{x \in B : \rho(x) = 0\}$ with $\rho \in C^{\infty}(\mathbb{R}^d)$ and some ball $B \subset \mathbb{R}^d$ contain a neighborhood in one d-1-hyperplane (for example $\{x_d = 1\}$). Show that in this case $|\hat{\sigma}(\xi)| \leq |\xi|^{-\epsilon}$ cannot hold for any $\epsilon > 0$. Here σ is the surface measure of M.