Submit the solutions in groups of two at the lecture on Tuesday, 2018-05-29

Exercise 1. For $z \in \mathbb{C}$, define the Ahlfors-Beurling kernel $k(z) = \frac{1}{z^2}$ and transform

$$Bf(z) = p.v. \ k * f(z).$$

- (a) Show that \hat{k} coincides with a bounded function. (Hint: cut k into pieces supported in annuli $\{2^j < |z| \le 2^{j+1}\}$)
- (b) Compute \hat{k} up to a multiplicative constant.

Exercise 2. For $s \in \mathbb{R}$, we define the norm

$$||f||_{H^s} = \left(\int (1+|\xi|^2)^s |\widehat{f}(\xi)|^2 \,\mathrm{d}\xi\right)^{1/2}$$

and for $s\in\mathbb{N}$

$$||f||_{W^{s,2}} = \left(\sum_{|\alpha| \le s} ||\partial^{\alpha} f||_{2}^{2}\right)^{1/2}$$

(for $\alpha \in \mathbb{N}^d$ we denote $|\alpha| = \sum_{i=1}^d \alpha_i$). Let H^s (resp. $W^{s,2}$) be the closure of Schwartz functions in the topology of $\|\cdot\|_{H^s}$ (resp. $\|\cdot\|_{W^{s,2}}$).

- (a) Show that there is a constant $C_{d,s}$ such that $C_{d,s}^{-1} ||f||_{W^{s,2}} \le ||f||_{H^s} \le C_{d,s} ||f||_{W^{s,2}}$ whenever s is a positive integer. Hence $f \in H^s$ if and only if $f \in W^{s,2}$.
- (b) Define an inner product on H^s with $s \in \mathbb{R}$ so that $\langle f, f \rangle_{H^s} = \|f\|_{H^s}^2$.
- (c) Prove that H^{-s} and H^s are isomorphic but there exists $f \in H^{-s}$ with $||f||_{H^s} = \infty$, that is, the isomorphism is not the identity map.