Submit the solutions in groups of two at the lecture on Thursday, 2018-05-03

Exercise 1. Let f be a tempered distribution. Define $\operatorname{supp} f$ to be the minimal closed set $K \subset \mathbb{R}^d$ such that $f(\varphi) = 0$ for all Schwartz functions supported in K^c .

- (a) Let ψ be a Schwartz function. Prove that $(\psi f)(\varphi) = f(\psi \varphi)$ defines a tempered distribution.
- (b) Find example of a tempered distribution f and a Schwartz function ψ such that $\psi(x) = 0$ for all $x \in \text{supp} f$ but $\psi f \neq 0$. (Hint: consider derivatives)
- (c) Let $f_n(x) = 1_{[0,1]}(x)\cos(2\pi nx)$ for $x \in \mathbb{R}$. Define $f_n(\varphi) = \int_{\mathbb{R}} f_n \varphi$ for Schwartz functions φ . Prove that f_n is a tempered distribution. Show that $\lim_{n\to\infty} f_n = 0$ as distribution but not in $L^p(\mathbb{R})$ for any $p \ge 1$.
- **Exercise 2.** (a) Suppose that 1 + 1/r = 1/p + 1/q, $r, p, q \ge 1$, and $f \in L^p(\mathbb{R}^d), g \in L^q(\mathbb{R}^d)$. Prove Young's convolution inequality

$$||f * g||_r \le ||f||_p ||g||_q.$$

- (b) Prove that there exists a Schwartz function φ such that $1_{B(0,1)} \leq \widehat{\varphi}(\xi) \leq 1_{B(0,2)}$.
- (c) Let $f \in S$ be such that supp $\widehat{f} \subset B(\xi_0, R)$ for some $\xi_0 \in \mathbb{R}^d$ and R > 0. Prove Bernstein's inequality: for all $q \ge p \ge 1$

$$||f||_q \le CR^{d(\frac{1}{p} - \frac{1}{q})} ||f||_p$$

Hint: Use the previous items and what you know about Fourier transform of translations and dilations. *Remark.* If f is supported in $B(x_0, R^{-1})$, then it follows from Hölder's inequality that

$$R^{d\left(\frac{1}{p}-\frac{1}{q}\right)} \|f\|_{p} \le C \|f\|_{q}$$

for all $q \ge p \ge 1$. According to Bernstein's inequality, this behaviour is reversed in the case of compact Fourier support.