.

Hand in at the lecture on Tuesday, 2018-04-17

Exercise 1. Let $p \in (0,1)$ and $p' = p/(p-1) < 0$. Define $||f||_{p'} = |||f|^{-1}||_{p'}.$

- (a) Suppose that $f, g > 0$ almost everywhere, $f \in L^p$ and $g^{-1} \in L^{p'}$. Show that $||fg||_1 \geq ||f||_p ||g||_{p'}$.
- (b) Find $f, g \in L^p(\mathbb{R})$ such that $||f + g||_p > ||f||_p + ||g||_p$.
- (c) Let $n \in \mathbb{N}$. Show that

$$
\left\| \sum_{i=1}^n f_i \right\|_p \le n^{(1-p)/p} \sum_{i=1}^n \|f_i\|_p.
$$

Exercise 2. Let $n \geq 2$.

(a) (Loomis–Whitney inequality). Let $f_j : \mathbb{R}^{n-1} \to \mathbb{R}$ be measurable functions and let $\pi_j(x_1, \ldots, x_n) =$ $(x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_n)$. Prove that

$$
\int_{\mathbb{R}^n} \prod_{j=1}^n |f_j \circ \pi_j|^{1/(n-1)} dx \le \prod_{j=1}^n \left(\int_{\mathbb{R}^{n-1}} |f_j| dx \right)^{1/(n-1)}
$$

(b) (Sobolev's inequality). Assume that $f \in L^1$ is continuously differentiable and $\partial_j f \in L^1$ for all $j \in$ $\{1, \ldots, n\}$. Using the Loomis–Whitney inequality, prove

$$
||f||_{n/(n-1)} \leq \sum_{j=1}^{n} ||\partial_j f||_1.
$$