Seminar zur Vorlesung über Periodenbereiche

Blatt 5, Vorträge am 18.05.2006

Aufgabe 10

- a) Formuliere das Bewertungskriterium für eigentliche Abbildungen in der Form [EGA II] Théorème 7.3.8.
- b) Sei k ein Ring, und seien 0 < r < n natürliche Zahlen. Zeige mit Hilfe des Bewertungskriteriums, dass die Grassmann-Varietät $\mathsf{Grass}_k(r,n)$ eigentlich über k ist.

Aufgabe 11

Sei k ein algebraisch abgeschlossener Körper. Wir betrachten alle auftretenden k-Schemata als Varietäten im klassischen Sinne, d. h. wir identifizieren sie mit den Mengen der abgeschlossenen Punkte.

Wir bezeichnen mit \mathcal{G} die Grassmann-Varietät $\mathsf{Grass}_k(2,4)$ und fassen ihre Punkte als Geraden im projektiven Raum \mathbb{P}^3_k auf.

- a) Sei $p \in \mathbb{P}^3_k$, und $H \subset \mathbb{P}^3_k$ eine Ebene, die p enthält. Sei $\Sigma_{p,H} \subset \mathcal{G}$ die Menge der Geraden in \mathbb{P}^3 , die durch p gehen und in H liegen. Zeige, dass $\Sigma_{p,H}$ unter der Plücker-Einbettung $\iota \colon \mathcal{G} \longrightarrow \mathbb{P}^5_k$ auf eine Gerade in \mathbb{P}^5_k abgebildet wird, und dass man alle Geraden, die im Bild von ι liegen, auf diese Weise erhält.
- b) Zu $p \in \mathbb{P}^3_k$ sei $\Sigma_p \subset \mathcal{G}$ die Menge der Geraden in \mathbb{P}^3_k , die p enthalten. Zu einer Ebene $H \subset \mathbb{P}^3_k$ sei $\Sigma_H \subseteq \mathcal{G}$ die Menge der Geraden, die in H enthalten sind. Zeige: Σ_p und Σ_H werden unter der Plücker-Einbettung ι auf Ebenen im \mathbb{P}^5_k abgebildet, und jede Ebene im \mathbb{P}^5_k , die im Bild von ι enthalten ist, hat die Form Σ_p oder Σ_H .

Literatur

[EGA II] A. Grothendieck, Éléments de géométrie algébrique II, Publ. Math. IHES 8 (1961), 5–222.