This is the last set of exercises and will not give points towards qualifying for the oral exam.

Exercise 1. Let D be the set of dyadic cubes in \mathbb{R}^d . Define

$$
M_d f(x) = \sup_{Q \in \mathcal{D}} \frac{1_Q(x)}{|Q|} \int_Q |f(y)| \, dy, \qquad M^\# f(x) = \sup_{Q \in \mathcal{D}} \frac{1_Q(x)}{|Q|} \int_Q |f(y) - f_Q| \, dy,
$$

where $f_Q = |Q|^{-1} \int_Q |f|$. Prove the good-lambda inequality: For any $\lambda, \epsilon > 0$, it holds

 $|\{M_d f > 2\lambda, M^{\#} f \leq \epsilon \lambda\}| \leq 2^d \epsilon |\{M_d f > \lambda\}|.$

(Hint: consider Calderón–Zygmund cubes at level λ . Add and subtract suitable f_Q inside the dyadic maximal function and use the hypothesis as well as properties of the maximal function.)

Exercise 2. (a) Show that for all $p \in (1,\infty)$ there is C depending only on d and p such that

$$
||M_d f||_p \le C||M^{\#} f||_p \le 2C||M_d f||_p.
$$

(b) Prove that if $\theta \in (0, 1)$ and $p, q > 1$ satisfy $1/p = (1 - \theta)/q$, then

$$
||f||_p \le C ||f||_q^{1-\theta} ||f||_{BMO}^{\theta}
$$

where C only depends on n, q and p .