Submit the solutions in groups of two at the lecture on Tuesday, 2018-05-15

Exercise 1. Let $1 \le p < \infty$. Suppose that there exists a constant C > 0 such that for all Schwartz functions f with $||f||_p = 1$ one has

$$\{x : |H(f)(x)| > 1\}| \le C.$$

Using only this inequality, prove that H maps $L^p(\mathbb{R}) \to L^{p,\infty}(\mathbb{R})$. (Hint: consider dilations)

- **Exercise 2.** (a) Denote $\varphi_{\lambda}(x) = \varphi(\lambda x)$. A distribution $f \in \mathcal{S}'(\mathbb{R}^d)$ is said to be homogeneous of degree α if $f(\varphi_{\lambda}) = \lambda^{\alpha} f(\varphi)$ for all test functions φ . Show that if f is homogeneous of degree α , then \hat{f} is homogeneous of degree α .
 - (b) Let $A \in \mathbb{R}^{d \times d}$ be a rotation matrix. Show that if $\varphi(Ax) = \varphi(x)$, then also $\widehat{\varphi}(A\xi) = \widehat{\varphi}(\xi)$. Show that if the tempered distribution f is invariant under rotations, so is \widehat{f} .
 - (c) Define the Riesz kernel of order $\alpha \in (0, n)$ to be $K_{\alpha}(x) = |x|^{-n+\alpha}$. Compute its Fourier transform up to a constant.
 - (d) Prove that

$$\|\partial_{\alpha}(K_k * f)\|_p \le C_{k,\alpha,d,p} \|f\|_p$$

for $p \in (1, \infty)$ and $\alpha \in \mathbb{N}^d$ with $\sum_j \alpha_j = k$.